Generalized fuzzy sliding mode control for MIMO nonlinear uncertain and perturbed systems

Sinda Aloui, O. Pagès, A. El Hajjaji, A. Chaari, Y. Koubaa
{"title":"Generalized fuzzy sliding mode control for MIMO nonlinear uncertain and perturbed systems","authors":"Sinda Aloui, O. Pagès, A. El Hajjaji, A. Chaari, Y. Koubaa","doi":"10.1109/MED.2010.5547636","DOIUrl":null,"url":null,"abstract":"In this paper, a stable adaptive fuzzy sliding mode based tracking control is developed for a class of non-square nonlinear systems that are represented by input output models involving system uncertainties and external disturbances. The main contribution of the proposed method is that non-square systems are be controlled in their original non-square form instead of squaring them by adding or eliminating variables. First, a fuzzy logic system is designed to estimate the unknown function. Secondly, in order to eliminate the chattering phenomenon brought by the conventional variable structure control, the signum function is replaced by an adaptive Proportional Derivative (PD) term in the proposed approach. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that the convergence to zero of tracking errors and the boudedness of all signals in the closed-loop system can be guaranteed. The efficiency of the proposed approach is shown by computer simulations.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a stable adaptive fuzzy sliding mode based tracking control is developed for a class of non-square nonlinear systems that are represented by input output models involving system uncertainties and external disturbances. The main contribution of the proposed method is that non-square systems are be controlled in their original non-square form instead of squaring them by adding or eliminating variables. First, a fuzzy logic system is designed to estimate the unknown function. Secondly, in order to eliminate the chattering phenomenon brought by the conventional variable structure control, the signum function is replaced by an adaptive Proportional Derivative (PD) term in the proposed approach. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that the convergence to zero of tracking errors and the boudedness of all signals in the closed-loop system can be guaranteed. The efficiency of the proposed approach is shown by computer simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO非线性不确定摄动系统的广义模糊滑模控制
针对一类包含系统不确定性和外部干扰的输入输出模型的非平方非线性系统,提出了一种基于稳定自适应模糊滑模的跟踪控制方法。该方法的主要贡献是将非平方系统控制在其原始的非平方形式,而不是通过添加或消除变量来对其进行平方。首先,设计一个模糊逻辑系统来估计未知函数。其次,为了消除常规变结构控制带来的抖振现象,采用自适应比例导数(PD)项代替sgum函数。基于李雅普诺夫稳定性分析,导出了系统各参数自适应律和鲁棒控制项,保证了跟踪误差收敛于零和闭环系统中所有信号的有界性。计算机仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1