Control System Response Improvement via Denoising Using Deep Neural Networks

Kiavash Fathi, M. Mahdavi
{"title":"Control System Response Improvement via Denoising Using Deep Neural Networks","authors":"Kiavash Fathi, M. Mahdavi","doi":"10.1109/UEMCON47517.2019.8993083","DOIUrl":null,"url":null,"abstract":"Noise is an inseparable part of control systems. Every sensor reading used for determining the state of a control system is corrupted with noise., therefor increasing the signal to noise ratio of sensor readings can significantly improve the performance of systems. The proposed filter in this paper captures the underlying probability distribution of the noise-free input signal in the training stage and therefor is capable of refining the corrupted input signal regardless of the distribution of the added noise. In order to acquire better data-driven based results in the suggested approach, it has been decided to use different neural network structures and stack these layers to form a hybrid multilayer filter. The properties of the stacked neural network sublayers guarantee a robust and general solution for the intended purpose. The key elements of the proposed filter are two auto-encoders., a dense neural network and a convolutional layer. Effects of every sublayer on the corrupted input signal., along with fine-tuning of these sublayers are discussed in detail. Afterwards in order to assess the generality and the robustness of the method., the proposed filter is exposed to a non-Gaussian noise. Finally., the proposed filter is tested on a linear and a nonlinear system. The comparison between systems” output to the reconstructed signal with that of the original noise-free signal., suggests the substantial improvement in the performance of the given systems. This improvement is in terms of systems” output resemblance to the reference noise-free output signal when the reconstructed signal is applied to the systems.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noise is an inseparable part of control systems. Every sensor reading used for determining the state of a control system is corrupted with noise., therefor increasing the signal to noise ratio of sensor readings can significantly improve the performance of systems. The proposed filter in this paper captures the underlying probability distribution of the noise-free input signal in the training stage and therefor is capable of refining the corrupted input signal regardless of the distribution of the added noise. In order to acquire better data-driven based results in the suggested approach, it has been decided to use different neural network structures and stack these layers to form a hybrid multilayer filter. The properties of the stacked neural network sublayers guarantee a robust and general solution for the intended purpose. The key elements of the proposed filter are two auto-encoders., a dense neural network and a convolutional layer. Effects of every sublayer on the corrupted input signal., along with fine-tuning of these sublayers are discussed in detail. Afterwards in order to assess the generality and the robustness of the method., the proposed filter is exposed to a non-Gaussian noise. Finally., the proposed filter is tested on a linear and a nonlinear system. The comparison between systems” output to the reconstructed signal with that of the original noise-free signal., suggests the substantial improvement in the performance of the given systems. This improvement is in terms of systems” output resemblance to the reference noise-free output signal when the reconstructed signal is applied to the systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络去噪的控制系统响应改进
噪声是控制系统不可分割的一部分。用于确定控制系统状态的每个传感器读数都受到噪声的破坏。,因此,提高传感器读数的信噪比可以显著提高系统的性能。本文提出的滤波器在训练阶段捕获了无噪声输入信号的潜在概率分布,因此无论附加噪声的分布如何,都能够精炼损坏的输入信号。为了在建议的方法中获得更好的基于数据驱动的结果,决定使用不同的神经网络结构并将这些层堆叠形成混合多层滤波器。堆叠神经网络子层的特性保证了鲁棒性和通用性。该滤波器的关键元件是两个自编码器。一个密集的神经网络和一个卷积层。每个子层对损坏输入信号的影响。,并详细讨论了这些子层的微调。为了评价该方法的通用性和鲁棒性。,所提出的滤波器暴露在非高斯噪声中。最后。在线性和非线性系统上进行了测试。系统对重构信号的输出与原始无噪声信号的输出的比较。,表明给定系统的性能有了实质性的改进。当将重构信号应用于系统时,系统输出与参考无噪声输出信号的相似度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1