Development of Part of Speech Tagger for Assamese Using HMM

Surjya Kanta Daimary, Vishal Goyal, Madhumita Barbora, Umrinderpal Singh
{"title":"Development of Part of Speech Tagger for Assamese Using HMM","authors":"Surjya Kanta Daimary, Vishal Goyal, Madhumita Barbora, Umrinderpal Singh","doi":"10.4018/IJSE.2018010102","DOIUrl":null,"url":null,"abstract":"This article presents the work on the Part-of-Speech Tagger for Assamese based on Hidden Markov Model (HMM). Over the years, a lot of language processing tasks have been done for Western and South-Asian languages. However, very little work is done for Assamese language. So, with this point of view, the POS Tagger for Assamese using Stochastic Approach is being developed. Assamese is a free word-order, highly agglutinate and morphological rich language, thus developing POS Tagger with good accuracy will help in development of other NLP task for Assamese. For this work, an annotated corpus of 271,890 words with a BIS tagset consisting of 38 tag labels is used. The model is trained on 256,690 words and the remaining words are used in testing. The system obtained an accuracy of 89.21% and it is being compared with other existing stochastic models.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2018010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article presents the work on the Part-of-Speech Tagger for Assamese based on Hidden Markov Model (HMM). Over the years, a lot of language processing tasks have been done for Western and South-Asian languages. However, very little work is done for Assamese language. So, with this point of view, the POS Tagger for Assamese using Stochastic Approach is being developed. Assamese is a free word-order, highly agglutinate and morphological rich language, thus developing POS Tagger with good accuracy will help in development of other NLP task for Assamese. For this work, an annotated corpus of 271,890 words with a BIS tagset consisting of 38 tag labels is used. The model is trained on 256,690 words and the remaining words are used in testing. The system obtained an accuracy of 89.21% and it is being compared with other existing stochastic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用HMM开发阿萨姆语词性标注器
本文介绍了基于隐马尔可夫模型的阿萨姆语词性标注器的研究工作。多年来,西方和南亚语言已经完成了许多语言处理任务。然而,阿萨姆语的工作做得很少。因此,从这个角度来看,使用随机方法的阿萨姆邦POS标记器正在开发中。阿萨姆语是一种词序自由、凝集度高、形态丰富的语言,因此开发出准确率高的词性标注器将有助于阿萨姆语其他自然语言处理任务的开发。在这项工作中,使用了一个包含271,890个单词的带注释的语料库和一个由38个标签组成的BIS标签集。模型训练了256,690个单词,剩下的单词用于测试。该系统获得了89.21%的准确率,并与其他已有的随机模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Different Classification Techniques for Sentiment Analysis Segmentation of Leukemia Cells Using Clustering: A Comparative Study Analyzing Tagore's Emotion With the Passage of Time in Song-Offerings: A Philosophical Study Based on Computational Intelligence Sarcasm Detection for Workplace Stress Management 2D Shape Recognition and Retrieval Using Shape Contour Based on the 8-Neighborhood Patterns Matching Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1