Identification of Smart Grid Attacks via State Vector Estimator and Support Vector Machine Methods

Wanghao Fei, P. Moses, Chad W. Davis
{"title":"Identification of Smart Grid Attacks via State Vector Estimator and Support Vector Machine Methods","authors":"Wanghao Fei, P. Moses, Chad W. Davis","doi":"10.1109/IETC47856.2020.9249125","DOIUrl":null,"url":null,"abstract":"In recent times, an increasing amount of intelligent electronic devices (IEDs) are being deployed to make power systems more reliable and economical. While these technologies are necessary for realizing a cyber-physical infrastructure for future smart power grids, they also introduce new vulnerabilities in the grid to different cyber-attacks. Traditional methods such as state vector estimation (SVE) are not capable of identifying cyber-attacks while the geometric information is also injected as an attack vector. In this paper, a machine learning based smart grid attack identification method is proposed. The proposed method is carried out by first collecting smart grid power flow data for machine learning training purposes which is later used to classify the attacks. The performance of both the proposed SVM method and the traditional SVE method are validated on IEEE 14, 30, 39, 57 and 118 bus systems, and the performance regarding the scale of the power system is evaluated. The results show that the SVM-based method performs better than the SVE-based in attack identification over a much wider scale of power systems","PeriodicalId":186446,"journal":{"name":"2020 Intermountain Engineering, Technology and Computing (IETC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IETC47856.2020.9249125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent times, an increasing amount of intelligent electronic devices (IEDs) are being deployed to make power systems more reliable and economical. While these technologies are necessary for realizing a cyber-physical infrastructure for future smart power grids, they also introduce new vulnerabilities in the grid to different cyber-attacks. Traditional methods such as state vector estimation (SVE) are not capable of identifying cyber-attacks while the geometric information is also injected as an attack vector. In this paper, a machine learning based smart grid attack identification method is proposed. The proposed method is carried out by first collecting smart grid power flow data for machine learning training purposes which is later used to classify the attacks. The performance of both the proposed SVM method and the traditional SVE method are validated on IEEE 14, 30, 39, 57 and 118 bus systems, and the performance regarding the scale of the power system is evaluated. The results show that the SVM-based method performs better than the SVE-based in attack identification over a much wider scale of power systems
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于状态向量估计和支持向量机方法的智能电网攻击识别
近年来,越来越多的智能电子设备(ied)被部署,以使电力系统更加可靠和经济。虽然这些技术对于实现未来智能电网的网络物理基础设施是必要的,但它们也给电网带来了新的漏洞,容易受到不同的网络攻击。传统的状态向量估计(SVE)等方法无法识别网络攻击,而几何信息也被注入作为攻击向量。提出了一种基于机器学习的智能电网攻击识别方法。该方法首先收集智能电网潮流数据,用于机器学习训练目的,然后用于对攻击进行分类。在IEEE 14、30、39、57和118总线系统上验证了SVM方法和传统SVE方法的性能,并对电力系统规模下的性能进行了评价。结果表明,在更大范围的电力系统攻击识别中,基于支持向量机的攻击识别方法优于基于svm的攻击识别方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Reality Training in Electric Utility Sector - An Underground Application Study Case Different assignments as different contexts: predictors across assignments and outcome measures in CS1 2020 Intermountain Engineering, Technology and Computing (IETC) Micromachining of Silicon Carbide using Wire Electrical Discharge Machining Stereophonic Frequency Modulation using MATLAB: An Undergraduate Research Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1