D. Shehada, A. Gawanmeh, Claude Fachkha, H. A. Damis
{"title":"Performance Evaluation of a Lightweight IoT Authentication Protocol","authors":"D. Shehada, A. Gawanmeh, Claude Fachkha, H. A. Damis","doi":"10.1109/ICSPIS51252.2020.9340146","DOIUrl":null,"url":null,"abstract":"Ensuring security to IoT devices is important in order to provide privacy and quality of services. Proposing a security solution is considered an important step towards achieving protection, however, proving the soundness of the solution is also crucial. In this paper, we propose a methodology for the performance evaluation of lightweight IoT-based authentication protocols based on execution time. Then, a formal verification test is conducted on a lightweight protocol proposed in the literature. The formal verification test conducted with Scyther tool proofs that the model provides mutual authentication, authorization, integrity, confidentiality, non-repudiation, and accountability. The protocol also was proven to provide protection from various attacks.","PeriodicalId":373750,"journal":{"name":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS51252.2020.9340146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring security to IoT devices is important in order to provide privacy and quality of services. Proposing a security solution is considered an important step towards achieving protection, however, proving the soundness of the solution is also crucial. In this paper, we propose a methodology for the performance evaluation of lightweight IoT-based authentication protocols based on execution time. Then, a formal verification test is conducted on a lightweight protocol proposed in the literature. The formal verification test conducted with Scyther tool proofs that the model provides mutual authentication, authorization, integrity, confidentiality, non-repudiation, and accountability. The protocol also was proven to provide protection from various attacks.