Brain Tumor Recognition based on Classical to Quantum Transfer Learning

K. T, S. S, Tirumalanadhuni Siva Manikumar, T. Dheeraj, A. Sumanth
{"title":"Brain Tumor Recognition based on Classical to Quantum Transfer Learning","authors":"K. T, S. S, Tirumalanadhuni Siva Manikumar, T. Dheeraj, A. Sumanth","doi":"10.1109/ICITIIT54346.2022.9744220","DOIUrl":null,"url":null,"abstract":"We expand the idea of transfer learning, generally applied in current machine learning paradigm, to the evolving hybrid neural network contrived out of traditional and quantum components for brain tumor recognition from MRI images. The proposed model is a perfect synergy of traditional classical component and a revolutionary quantum component. The notion of traditional components is to customize a pre-trained network to extract features from brain tumor MRI images, whereas the notion of the quantum components is to employ variational quantum circuit to act as a classifier with learnable parameters. Exhaustive simulation experiments reveals the efficacy of the quantum transfer learning scheme to beat the performance of the conventional classical transfer learning.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We expand the idea of transfer learning, generally applied in current machine learning paradigm, to the evolving hybrid neural network contrived out of traditional and quantum components for brain tumor recognition from MRI images. The proposed model is a perfect synergy of traditional classical component and a revolutionary quantum component. The notion of traditional components is to customize a pre-trained network to extract features from brain tumor MRI images, whereas the notion of the quantum components is to employ variational quantum circuit to act as a classifier with learnable parameters. Exhaustive simulation experiments reveals the efficacy of the quantum transfer learning scheme to beat the performance of the conventional classical transfer learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于经典到量子迁移学习的脑肿瘤识别
我们将迁移学习的思想(通常应用于当前的机器学习范式)扩展到由传统和量子组件设计的混合神经网络,用于从MRI图像中识别脑肿瘤。该模型是传统经典分量和革命性量子分量的完美协同。传统组件的概念是定制一个预训练的网络来提取脑肿瘤MRI图像的特征,而量子组件的概念是使用变分量子电路作为具有可学习参数的分类器。详尽的仿真实验表明,量子迁移学习方案的性能优于传统的经典迁移学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1