Acoustic sensors

A. Crunchant, Chanakya Dev Nakka, Jason T. Isaacs, A. Piel
{"title":"Acoustic sensors","authors":"A. Crunchant, Chanakya Dev Nakka, Jason T. Isaacs, A. Piel","doi":"10.1201/9781420042139.ch13","DOIUrl":null,"url":null,"abstract":"Animals share acoustic space to communicate vocally. The employment of passive acoustic monitoring to establish a better understanding of acoustic communities has emerged as an important tool in assessing overall diversity and habitat integrity as well as informing species conservation strategies. This chapter aims to review how traditional and more emerging bioacoustic techniques can address conservation issues. Acoustic data can be used to estimate species occupancy, population abundance, and animal density. More broadly, biodiversity can be assessed via acoustic diversity indices, using the number of acoustically conspicuous species. Finally, changes to the local soundscape provide an early warning of habitat disturbance, including habitat loss and fragmentation. Like other emerging technologies, passive acoustic monitoring (PAM) benefits from an interdisciplinary collaboration between biologists, engineers, and bioinformaticians to develop detection algorithms for specific species that reduce time-consuming manual data mining. The chapter also describes different methods to process, visualize, and analyse acoustic data, from open source to commercial software. The technological advances in bioacoustics turning heavy, non-portable, and expensive hardware and labour and time-intensive methods for analysis into new small, movable, affordable, and automated systems, make acoustic sensors increasingly popular among conservation biologists for all taxa.","PeriodicalId":158957,"journal":{"name":"Conservation Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420042139.ch13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animals share acoustic space to communicate vocally. The employment of passive acoustic monitoring to establish a better understanding of acoustic communities has emerged as an important tool in assessing overall diversity and habitat integrity as well as informing species conservation strategies. This chapter aims to review how traditional and more emerging bioacoustic techniques can address conservation issues. Acoustic data can be used to estimate species occupancy, population abundance, and animal density. More broadly, biodiversity can be assessed via acoustic diversity indices, using the number of acoustically conspicuous species. Finally, changes to the local soundscape provide an early warning of habitat disturbance, including habitat loss and fragmentation. Like other emerging technologies, passive acoustic monitoring (PAM) benefits from an interdisciplinary collaboration between biologists, engineers, and bioinformaticians to develop detection algorithms for specific species that reduce time-consuming manual data mining. The chapter also describes different methods to process, visualize, and analyse acoustic data, from open source to commercial software. The technological advances in bioacoustics turning heavy, non-portable, and expensive hardware and labour and time-intensive methods for analysis into new small, movable, affordable, and automated systems, make acoustic sensors increasingly popular among conservation biologists for all taxa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声学传感器
动物共享声音空间来进行声音交流。利用被动声监测来更好地了解声群落已经成为评估总体多样性和栖息地完整性以及为物种保护策略提供信息的重要工具。本章旨在回顾传统和新兴的生物声学技术如何解决保护问题。声学数据可以用来估计物种占用、种群丰度和动物密度。更广泛地说,生物多样性可以通过声学多样性指数来评估,利用声学显著物种的数量。最后,局部声景的变化提供了栖息地干扰的早期预警,包括栖息地丧失和破碎化。与其他新兴技术一样,被动声学监测(PAM)得益于生物学家、工程师和生物信息学家之间的跨学科合作,为特定物种开发检测算法,减少了耗时的人工数据挖掘。本章还描述了从开源到商业软件处理、可视化和分析声学数据的不同方法。生物声学技术的进步将笨重的、不可携带的、昂贵的硬件和耗费人力和时间的分析方法转变为新的、小型的、可移动的、负担得起的和自动化的系统,这使得声学传感器在所有分类群的保护生物学家中越来越受欢迎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Camera trapping for conservation Mobile data collection apps Environmental DNA for conservation Digital surveillance technologies in conservation and their social implications From the cloud to the ground: converting satellite data into conservation decisions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1