Method to Approximate Initial Values for Training Lineal Neural Networks

A. G. Blanco
{"title":"Method to Approximate Initial Values for Training Lineal Neural Networks","authors":"A. G. Blanco","doi":"10.1109/CERMA.2008.40","DOIUrl":null,"url":null,"abstract":"The present paper proposes a method to calculate a set of proposed initial values for the weight matrix and the bias vector of a neural network prior to training. The method described here applies for linear neural networks with one hidden layer, and a known proportional relationship between inputs and outputs. The algorithm and the calculations are intended to be simple, to facilitate automation in small processors The method normalizes values in a tri-level form, finds the relationships on the maximum and minimum values for all combinations of inputs and outputs, averages these results and builds the weight matrix and bias vector from these results. The end result is a set of initial values prior to training, intended to have a start point for training closer to the end result. Overall result is less training time.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present paper proposes a method to calculate a set of proposed initial values for the weight matrix and the bias vector of a neural network prior to training. The method described here applies for linear neural networks with one hidden layer, and a known proportional relationship between inputs and outputs. The algorithm and the calculations are intended to be simple, to facilitate automation in small processors The method normalizes values in a tri-level form, finds the relationships on the maximum and minimum values for all combinations of inputs and outputs, averages these results and builds the weight matrix and bias vector from these results. The end result is a set of initial values prior to training, intended to have a start point for training closer to the end result. Overall result is less training time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性神经网络训练初值的近似方法
本文提出了一种在训练前计算神经网络权矩阵和偏置向量的初始值的方法。这里描述的方法适用于具有一个隐藏层的线性神经网络,并且输入和输出之间存在已知的比例关系。该方法以三层形式对值进行规范化,找出所有输入和输出组合的最大值和最小值之间的关系,对这些结果进行平均,并根据这些结果构建权重矩阵和偏置向量。最终结果是训练前的一组初始值,目的是有一个更接近最终结果的训练起点。总的结果是更少的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling a Vehicle Using Bond Graphs The Laplacian Artificial Potential Field (LAPF) for the Path Planning of Robotic Manipulators Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms Design and Construction of an EEG Data Acquisition System for Measurement of Auditory Evoked Potentials Proposal for a Remote Surgery System Based on Wireless Communications, Electromyography and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1