Bayesian Prediction of Incontinence among Older Women Using an Experimental Design Template

T. Ogunyemi, Mohammad-Reza Siadat, A. Diokno, S. Arslanturk, Kim Killinger
{"title":"Bayesian Prediction of Incontinence among Older Women Using an Experimental Design Template","authors":"T. Ogunyemi, Mohammad-Reza Siadat, A. Diokno, S. Arslanturk, Kim Killinger","doi":"10.1109/ICISA.2014.6847371","DOIUrl":null,"url":null,"abstract":"In this study, a Bayesian predictor of urinary incontinence (UI) is devised for screening older women. Risk factors identified from an epidemiological survey data as significant for UI, are utilized. The proposed Bayesian method combines an experimental design template with relevant information to construct a predictive index in terms of posterior probabilities. The computations are carried out on a longitudinal data called the Medical, Epidemiological and Social Aspects of Aging (MESA). The index is applied to the baseline and follow-up portions of the MESA data. The results show that, the percentage of the absolute relative change between the prior and posterior probabilities can be used as a decision tool to make conclusions on credibility of the class labels on continence and incontinence. The proposed index can be applied for immediate screening and for predicting future urinary incontinence in older women of comparable demographics as those presented in the MESA data.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a Bayesian predictor of urinary incontinence (UI) is devised for screening older women. Risk factors identified from an epidemiological survey data as significant for UI, are utilized. The proposed Bayesian method combines an experimental design template with relevant information to construct a predictive index in terms of posterior probabilities. The computations are carried out on a longitudinal data called the Medical, Epidemiological and Social Aspects of Aging (MESA). The index is applied to the baseline and follow-up portions of the MESA data. The results show that, the percentage of the absolute relative change between the prior and posterior probabilities can be used as a decision tool to make conclusions on credibility of the class labels on continence and incontinence. The proposed index can be applied for immediate screening and for predicting future urinary incontinence in older women of comparable demographics as those presented in the MESA data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用实验设计模板的老年妇女尿失禁的贝叶斯预测
在这项研究中,尿失禁(UI)的贝叶斯预测器设计用于筛选老年妇女。利用从流行病学调查数据中确定的对尿失速有显著影响的危险因素。提出的贝叶斯方法结合实验设计模板和相关信息,以后验概率为基础构建预测指标。这些计算是根据一项名为老龄化的医学、流行病学和社会方面(MESA)的纵向数据进行的。该指数适用于MESA数据的基线和后续部分。结果表明,先验概率与后验概率之间的绝对相对变化百分比可以作为一种决策工具,对失禁和失禁分类标签的可信度做出结论。建议的指数可以应用于即时筛查和预测未来的老年妇女尿失禁与MESA数据中提出的可比人口统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of the Statechart Diagrams Visual Syntax Model Transformation Rule for Generating Database Schema Web of Object Service Architecture for Device Orchestration and Composition QoS Management of Real-Time Applications in NVRAM-Based Multi-Core Smartphones Applying Eco-Threading Framework to Memory-Intensive Hadoop Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1