Deconvolutional artificial neural network models for large eddy simulation of turbulence

Zelong Yuan, C. Xie, Jianchun Wang
{"title":"Deconvolutional artificial neural network models for large eddy simulation of turbulence","authors":"Zelong Yuan, C. Xie, Jianchun Wang","doi":"10.1063/5.0027146","DOIUrl":null,"url":null,"abstract":"Deconvolutional artificial neural network (DANN) models are developed for subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence. The filtered velocities at different spatial points are used as input features of the DANN models to reconstruct the unfiltered velocity. The grid width of the DANN models is chosen to be smaller than the filter width, in order to accurately model the effects of SGS dynamics. The DANN models can predict the SGS stress more accurately than the conventional approximate deconvolution method (ADM) and velocity gradient model (VGM) in a prior study: the correlation coefficients can be made larger than 99\\% and the relative errors can be made less than 15\\% for the DANN model. In an a posteriori study, a comprehensive comparison of the DANN model, the implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that: the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity and the instantaneous coherent structures without increasing the considerable computational cost. Besides, the trained DANN models without any fine-tuning can predict the velocity statistics well for different filter widths. These results indicate that the DANN framework with consideration of SGS spatial features is a promising approach to develop advanced SGS models in the LES of turbulence.","PeriodicalId":328276,"journal":{"name":"arXiv: Fluid Dynamics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0027146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Deconvolutional artificial neural network (DANN) models are developed for subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence. The filtered velocities at different spatial points are used as input features of the DANN models to reconstruct the unfiltered velocity. The grid width of the DANN models is chosen to be smaller than the filter width, in order to accurately model the effects of SGS dynamics. The DANN models can predict the SGS stress more accurately than the conventional approximate deconvolution method (ADM) and velocity gradient model (VGM) in a prior study: the correlation coefficients can be made larger than 99\% and the relative errors can be made less than 15\% for the DANN model. In an a posteriori study, a comprehensive comparison of the DANN model, the implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that: the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity and the instantaneous coherent structures without increasing the considerable computational cost. Besides, the trained DANN models without any fine-tuning can predict the velocity statistics well for different filter widths. These results indicate that the DANN framework with consideration of SGS spatial features is a promising approach to develop advanced SGS models in the LES of turbulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于湍流大涡模拟的去卷积人工神经网络模型
针对湍流大涡模拟(LES)中的亚网格尺度(SGS)应力,开发了去卷积人工神经网络(DANN)模型。不同空间点的滤波速度作为 DANN 模型的输入特征,用于重建未滤波速度。为了准确模拟 SGS 动力效应,DANN 模型的网格宽度选择小于滤波宽度。在先期研究中,DANN模型比传统的近似解卷积法(ADM)和速度梯度模型(VGM)能更准确地预测SGS应力:DANN模型的相关系数可大于99%,相对误差可小于15%。在后验研究中,对 DANNN 模型、隐式大涡模拟(ILES)、动态 Smagorinsky 模型(DSM)和动态混合模型(DMM)进行了综合比较,结果表明:DANNN 模型在预测速度谱、速度的各种统计量和瞬时相干结构方面优于 ILES、DSM 和 DMM 模型,而且没有增加大量的计算成本。此外,训练好的 DANN 模型不需要任何微调就能很好地预测不同滤波器宽度下的速度统计量。这些结果表明,考虑 SGS 空间特征的 DANN 框架是在湍流 LES 中开发先进 SGS 模型的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reproduction of vortex lattices in the simulations of rotating liquid helium-4 by numerically solving the two-fluid model using smoothed-particle hydrodynamics incorporating vortex dynamics Surface wave scattering by multiple flexible fishing cage system Capillary fluctuations and energy dynamics for flow in porous media Paths to caustic formation in turbulent aerosols An implicit kinetic inviscid flux for predicting continuum flows in all speed regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1