Limiting pre-distribution and clustering users on multicast pre-distribution VoD

N. Kamiyama, R. Kawahara, Tatsuya Mori, H. Hasegawa
{"title":"Limiting pre-distribution and clustering users on multicast pre-distribution VoD","authors":"N. Kamiyama, R. Kawahara, Tatsuya Mori, H. Hasegawa","doi":"10.1109/INM.2011.5990661","DOIUrl":null,"url":null,"abstract":"In Video on Demand (VoD) services, the demand for content items greatly changes daily, so reducing the server load at the peak time is an important issue for ISPs to reduce the server cost. To achieve this goal, we proposed to reduce the server load by multicasting popular content items to all users independently of actual requests as well as providing on-demand unicast delivery. In this solution, however, the hit ratio of pre-distributed content items is small, and a large-capacity storage is required at set-top box (STB). We might be able to cope with this problem by limiting the number of pre-distributed content items or clustering users based on the history of viewing. We evaluate the effect of these techniques using actual VoD access log data. We clarify that the required storage capacity at STB can be halved while keeping the effect of server load reduction to about 80% by limiting pre-distributed content items, and user clustering is effective only when the cluster count is about two.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Video on Demand (VoD) services, the demand for content items greatly changes daily, so reducing the server load at the peak time is an important issue for ISPs to reduce the server cost. To achieve this goal, we proposed to reduce the server load by multicasting popular content items to all users independently of actual requests as well as providing on-demand unicast delivery. In this solution, however, the hit ratio of pre-distributed content items is small, and a large-capacity storage is required at set-top box (STB). We might be able to cope with this problem by limiting the number of pre-distributed content items or clustering users based on the history of viewing. We evaluate the effect of these techniques using actual VoD access log data. We clarify that the required storage capacity at STB can be halved while keeping the effect of server load reduction to about 80% by limiting pre-distributed content items, and user clustering is effective only when the cluster count is about two.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组播预分发点播限制预分发和用户聚类
在视频点播(Video on Demand, VoD)业务中,用户对内容的需求每天都有很大的变化,因此如何在高峰时段降低服务器的负载是网络服务提供商降低服务器成本的一个重要问题。为了实现这一目标,我们建议通过独立于实际请求向所有用户广播流行内容项目以及提供按需单播交付来减少服务器负载。但该方案中预分发内容项的命中率较小,且需要机顶盒上的大容量存储。我们可以通过限制预分发内容项的数量或基于浏览历史对用户进行聚类来解决这个问题。我们使用实际的视频点播访问日志数据来评估这些技术的效果。我们明确指出,通过限制预分发的内容项,可以将机顶盒所需的存储容量减半,同时将服务器负载减少到80%左右,并且只有当集群数量约为两个时,用户集群才有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards adopting a tooldriven, integrated and automated change management process for virtual machine provisioning Effective VM sizing in virtualized data centers What will happen if cloud management operations burst out? A next generation entropy based framework for alert detection in system logs Contract Management for Cloud Services: Information modelling aspects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1