First Efficient Convergence for Streaming k-PCA: A Global, Gap-Free, and Near-Optimal Rate

Zeyuan Allen-Zhu, Yuanzhi Li
{"title":"First Efficient Convergence for Streaming k-PCA: A Global, Gap-Free, and Near-Optimal Rate","authors":"Zeyuan Allen-Zhu, Yuanzhi Li","doi":"10.1109/FOCS.2017.51","DOIUrl":null,"url":null,"abstract":"We study streaming principal component analysis (PCA), that is to find, in O(dk) space, the top k eigenvectors of a d× d hidden matrix \\bold \\Sigma with online vectors drawn from covariance matrix \\bold \\Sigma.We provide global convergence for Ojas algorithm which is popularly used in practice but lacks theoretical understanding for k≈1. We also provide a modified variant \\mathsf{Oja}^{++} that runs even faster than Ojas. Our results match the information theoretic lower bound in terms of dependency on error, on eigengap, on rank k, and on dimension d, up to poly-log factors. In addition, our convergence rate can be made gap-free, that is proportional to the approximation error and independent of the eigengap.In contrast, for general rank k, before our work (1) it was open to design any algorithm with efficient global convergence rate; and (2) it was open to design any algorithm with (even local) gap-free convergence rate in O(dk) space.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

We study streaming principal component analysis (PCA), that is to find, in O(dk) space, the top k eigenvectors of a d× d hidden matrix \bold \Sigma with online vectors drawn from covariance matrix \bold \Sigma.We provide global convergence for Ojas algorithm which is popularly used in practice but lacks theoretical understanding for k≈1. We also provide a modified variant \mathsf{Oja}^{++} that runs even faster than Ojas. Our results match the information theoretic lower bound in terms of dependency on error, on eigengap, on rank k, and on dimension d, up to poly-log factors. In addition, our convergence rate can be made gap-free, that is proportional to the approximation error and independent of the eigengap.In contrast, for general rank k, before our work (1) it was open to design any algorithm with efficient global convergence rate; and (2) it was open to design any algorithm with (even local) gap-free convergence rate in O(dk) space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流k-PCA的首次有效收敛:一个全局、无间隙和近最优速率
我们研究了流主成分分析(PCA),即在O(dk)空间中找到d×的前k个特征向量;d隐矩阵\bold \Sigma与从协方差矩阵\bold \Sigma绘制的在线向量。我们提供了Ojas算法的全局收敛性,该算法在实践中广泛使用,但对k≈1缺乏理论认识。我们还提供了一个修改过的变体\mathsf{Oja}^{++},它的运行速度甚至比Ojas还要快。我们的结果在对误差、对特征、对秩k和对维d的依赖方面符合信息理论的下界,直到多对数因子。此外,我们的收敛速度可以是无间隙的,这与近似误差成正比,与特征无关。相比之下,对于一般秩k,在我们的工作(1)之前,可以设计任何具有高效全局收敛率的算法;(2)可以在O(dk)空间中设计任何具有(甚至局部)无间隙收敛率的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1