{"title":"Testing Against Independence with an Eavesdropper","authors":"Sara Faour, Mustapha Hamad, M. Sarkiss, M. Wigger","doi":"10.1109/ITW55543.2023.10161630","DOIUrl":null,"url":null,"abstract":"We study a distributed binary hypothesis testing (HT) problem with communication and security constraints, involving three parties: a remote sensor called Alice, a legitimate decision center called Bob, and an eavesdropper called Eve, all having their own source observations. In this system, Alice conveys a rate-R description of her observations to Bob, and Bob performs a binary hypothesis test on the joint distribution underlying his and Alice’s observations. The goal of Alice and Bob is to maximize the exponential decay of Bob’s miss-detection (type-II error) probability under two constraints: Bob’s false-alarm (type-I error) probability has to stay below a given threshold and Eve’s uncertainty (equivocation) about Alice’s observations should stay above a given security threshold even when Eve learns Alice’s message. For the special case of testing against independence, we characterize the largest possible type-II error exponent under the described type-I error probability and security constraints.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We study a distributed binary hypothesis testing (HT) problem with communication and security constraints, involving three parties: a remote sensor called Alice, a legitimate decision center called Bob, and an eavesdropper called Eve, all having their own source observations. In this system, Alice conveys a rate-R description of her observations to Bob, and Bob performs a binary hypothesis test on the joint distribution underlying his and Alice’s observations. The goal of Alice and Bob is to maximize the exponential decay of Bob’s miss-detection (type-II error) probability under two constraints: Bob’s false-alarm (type-I error) probability has to stay below a given threshold and Eve’s uncertainty (equivocation) about Alice’s observations should stay above a given security threshold even when Eve learns Alice’s message. For the special case of testing against independence, we characterize the largest possible type-II error exponent under the described type-I error probability and security constraints.