A Fast Real-time Face Gender Detector on CPU using Superficial Network with Attention Modules

Adri Priadana, M. D. Putro, Changhyun Jeong, K. Jo
{"title":"A Fast Real-time Face Gender Detector on CPU using Superficial Network with Attention Modules","authors":"Adri Priadana, M. D. Putro, Changhyun Jeong, K. Jo","doi":"10.1109/IWIS56333.2022.9920714","DOIUrl":null,"url":null,"abstract":"A gender detector has become an essential part of digital signage to support the decision to provide relevant ads for each audience. Application installed in digital signage must be capable of running on low-cost or CPU devices to minimize system costs. This study proposed a fast face gender detector (Gender-CPU) that can sprint in real-time on CPU devices implemented on digital signage. The proposed architecture contains a superficial network with attention modules (SufiaNet). This architecture only consists of three convolution layers, making it super shallow and generating a small number of parameters. In order to redeem the lack of a super shallow network, the global attention module is assigned to improve the quality of the feature map resulting from the previous convolution layers. In the experiment, the training and validation process is conducted on the UTKFace, the Adience Benchmark, and the Labeled Faces in the Wild (LFW) datasets. The SufiaNet gains competitive accuracy compared to other common and light architectures on the three datasets. Moreover, the detector can run 84.97 frames per second on a CPU device, which is fast to run in real-time.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A gender detector has become an essential part of digital signage to support the decision to provide relevant ads for each audience. Application installed in digital signage must be capable of running on low-cost or CPU devices to minimize system costs. This study proposed a fast face gender detector (Gender-CPU) that can sprint in real-time on CPU devices implemented on digital signage. The proposed architecture contains a superficial network with attention modules (SufiaNet). This architecture only consists of three convolution layers, making it super shallow and generating a small number of parameters. In order to redeem the lack of a super shallow network, the global attention module is assigned to improve the quality of the feature map resulting from the previous convolution layers. In the experiment, the training and validation process is conducted on the UTKFace, the Adience Benchmark, and the Labeled Faces in the Wild (LFW) datasets. The SufiaNet gains competitive accuracy compared to other common and light architectures on the three datasets. Moreover, the detector can run 84.97 frames per second on a CPU device, which is fast to run in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关注模块的CPU表面网络快速实时人脸性别检测
性别探测器已经成为数字标牌的重要组成部分,以支持为每个受众提供相关广告的决定。安装在数字标牌中的应用程序必须能够在低成本或CPU设备上运行,以最大限度地降低系统成本。本研究提出了一种快速的人脸性别检测器(gender -CPU),可以在数字标牌上实现CPU设备的实时冲刺。所提出的体系结构包含一个具有注意力模块的表层网络(SufiaNet)。该架构仅由三个卷积层组成,使其非常浅,并且生成少量参数。为了弥补超浅网络的不足,分配了全局关注模块,以提高前几层卷积得到的特征映射的质量。在实验中,在UTKFace、Adience Benchmark和Labeled Faces In the Wild (LFW)数据集上进行了训练和验证过程。在这三个数据集上,SufiaNet获得了与其他常见和轻量级架构相比具有竞争力的精度。此外,检测器可以在CPU设备上每秒运行84.97帧,实时运行速度很快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TASuRe: Text Aware Super-Resolution Estimation of Traffic Density Using CNN with Simple Architecture A Study on Efficient Multi-task Networks for Multiple Object Tracking Sensor Fusion of Camera and 2D LiDAR for Self-Driving Automobile in Obstacle Avoidance Scenarios Automatic Feature Detection and Classification for Watermelon (Citrillus lanatus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1