Scott K. Ralph, J. Irvine, M. Snorrason, Steve Vanstone
{"title":"An Image Metric-Based ATR Performance Prediction Testbed","authors":"Scott K. Ralph, J. Irvine, M. Snorrason, Steve Vanstone","doi":"10.1109/AIPR.2006.13","DOIUrl":null,"url":null,"abstract":"Automatic target detection (ATD) systems process imagery to detect and locate targets in imagery in support of a variety of military missions. Accurate prediction of ATD performance would assist in system design and trade studies, collection management, and mission planning. A need exists for ATD performance prediction based exclusively on information available from the imagery and its associated metadata. We present a predictor based on image measures quantifying the intrinsic ATD difficulty on an image. The modeling effort consists of two phases: a learning phase, where image measures are computed for a set of test images, the ATD performance is measured, and a prediction model is developed; and a second phase to test and validate performance prediction. The learning phase produces a mapping, valid across various ATR algorithms, which is even applicable when no image truth is avail-able (e.g., when evaluating denied area imagery). The testbed has plug-in capability to allow rapid evaluation of new ATR algorithms. The image measures employed in the model include: statistics derived from a constant false alarm rate (CFAR) processor, the power spectrum signature, and others. We present a performance predictor using a trained classifier ATD that was constructed using GENIE, a tool developed at Los Alamos National Laboratory. The paper concludes with a discussion of future research.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Automatic target detection (ATD) systems process imagery to detect and locate targets in imagery in support of a variety of military missions. Accurate prediction of ATD performance would assist in system design and trade studies, collection management, and mission planning. A need exists for ATD performance prediction based exclusively on information available from the imagery and its associated metadata. We present a predictor based on image measures quantifying the intrinsic ATD difficulty on an image. The modeling effort consists of two phases: a learning phase, where image measures are computed for a set of test images, the ATD performance is measured, and a prediction model is developed; and a second phase to test and validate performance prediction. The learning phase produces a mapping, valid across various ATR algorithms, which is even applicable when no image truth is avail-able (e.g., when evaluating denied area imagery). The testbed has plug-in capability to allow rapid evaluation of new ATR algorithms. The image measures employed in the model include: statistics derived from a constant false alarm rate (CFAR) processor, the power spectrum signature, and others. We present a performance predictor using a trained classifier ATD that was constructed using GENIE, a tool developed at Los Alamos National Laboratory. The paper concludes with a discussion of future research.