Design of the Autonomous Fault Manager for learning and estimating home network faults

Chang-Eun Lee, Kyeong-Deok Moon
{"title":"Design of the Autonomous Fault Manager for learning and estimating home network faults","authors":"Chang-Eun Lee, Kyeong-Deok Moon","doi":"10.1109/ICCE.2009.5012296","DOIUrl":null,"url":null,"abstract":"This paper proposes a design of software Autonomous Fault Manager (AFM) for learning and estimating faults generated in home network. Most of the existing researches employ rule-based fault processing mechanism, but those works depend on the static characteristics of rules for a specific home environment. Therefore, we focus on a fault estimating and learning mechanism that autonomously produces a fault diagnosis rule and predicts an expected fault pattern in the mutually different home environment. For this, the proposed AFM extracts the home network information with a set of training data using the 5W1H (Who, What, When, Where, Why, How) based contexts to autonomously produce a new fault diagnosis rule. The fault pattern with high correlations can then be predicted for the current home network operation pattern.","PeriodicalId":154986,"journal":{"name":"2009 Digest of Technical Papers International Conference on Consumer Electronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digest of Technical Papers International Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2009.5012296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a design of software Autonomous Fault Manager (AFM) for learning and estimating faults generated in home network. Most of the existing researches employ rule-based fault processing mechanism, but those works depend on the static characteristics of rules for a specific home environment. Therefore, we focus on a fault estimating and learning mechanism that autonomously produces a fault diagnosis rule and predicts an expected fault pattern in the mutually different home environment. For this, the proposed AFM extracts the home network information with a set of training data using the 5W1H (Who, What, When, Where, Why, How) based contexts to autonomously produce a new fault diagnosis rule. The fault pattern with high correlations can then be predicted for the current home network operation pattern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于家庭网络故障学习与估计的自主故障管理器设计
提出了一种用于家庭网络故障学习和估计的软件自治故障管理器(AFM)的设计。现有的研究大多采用基于规则的故障处理机制,但这些工作依赖于特定家庭环境下规则的静态特性。因此,我们重点研究了一种故障估计和学习机制,该机制可以在相互不同的家庭环境中自主产生故障诊断规则并预测预期的故障模式。为此,本文提出的AFM利用基于5W1H (Who, What, When, Where, Why, How)上下文的一组训练数据提取家庭网络信息,自动生成新的故障诊断规则。然后可以预测当前家庭网络运行模式中具有高相关性的故障模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6.1-1 efficient true motion estimation using integral frame attributes Multi-view renderer for auto-stereoscopic mobile devices Weakly-tethered model using standardized content protection Video generation for high spatio-temporal resolution imaging Camera shaking effects reduction by means of still sequence stabilization and spatio-temporal filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1