A Real-Time Learning-Based Super-Resolution System on FPGA

Daolu Zha, Xi Jin, Rui Shang, Pengfei Yang
{"title":"A Real-Time Learning-Based Super-Resolution System on FPGA","authors":"Daolu Zha, Xi Jin, Rui Shang, Pengfei Yang","doi":"10.1142/S0129626420500115","DOIUrl":null,"url":null,"abstract":"This paper proposes a real-time super-resolution (SR) system. The proposed system performs a fast SR algorithm that generates a high-resolution image from a low-resolution image using direct regression functions with an up-scaling factor of 2. This algorithm contained two processes: feature learning and SR image prediction. The feature learning stage is performed offline, in which several regression functions were trained. The SR image prediction stage is implemented on the proposed system to generate high-resolution image patches. The system implemented on a Xilinx Virtex 7 field-programmable gate array achieves output resolution of [Formula: see text] (UHD) at 85 fps and 700Mpixels/s throughput. Structure similarity (SSIM) is measured for image quality. Experimental results show that the proposed system provides high image quality for real-time applications. And the proposed system possesses high scalability for resolution.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626420500115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a real-time super-resolution (SR) system. The proposed system performs a fast SR algorithm that generates a high-resolution image from a low-resolution image using direct regression functions with an up-scaling factor of 2. This algorithm contained two processes: feature learning and SR image prediction. The feature learning stage is performed offline, in which several regression functions were trained. The SR image prediction stage is implemented on the proposed system to generate high-resolution image patches. The system implemented on a Xilinx Virtex 7 field-programmable gate array achieves output resolution of [Formula: see text] (UHD) at 85 fps and 700Mpixels/s throughput. Structure similarity (SSIM) is measured for image quality. Experimental results show that the proposed system provides high image quality for real-time applications. And the proposed system possesses high scalability for resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的实时学习超分辨率系统
本文提出了一种实时超分辨率(SR)系统。该系统采用一种快速的SR算法,利用上尺度因子为2的直接回归函数从低分辨率图像生成高分辨率图像。该算法包含特征学习和SR图像预测两个过程。特征学习阶段离线进行,训练多个回归函数。在该系统上实现了SR图像预测阶段,生成高分辨率图像补丁。在Xilinx Virtex 7现场可编程门阵列上实现的系统以85 fps和700Mpixels/s的吞吐量实现[公式:见文本](UHD)的输出分辨率。结构相似度(SSIM)用于测量图像质量。实验结果表明,该系统能够提供高质量的实时图像。该系统具有较高的分辨率扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1