Cassava Leaf Disease Detection Using Deep Learning

Manick, J. Srivastava
{"title":"Cassava Leaf Disease Detection Using Deep Learning","authors":"Manick, J. Srivastava","doi":"10.1109/iemtronics55184.2022.9795751","DOIUrl":null,"url":null,"abstract":"In this study, a clever plan to detect cassava leaves has been developed using a customized fine-tuned deep learning model. Five categories of diseases are used in this study: Cassava Brown Steak Disease (CBSD), Cassava Green Mite (CGM), Cassava Bacterial Blight (CBB), and Cassava Mosaic Disease (CMD) and Health. The results showed an accuracy on the test data obtained was over 77% on original problem using clever data augmentation without affecting the scope of this problem.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a clever plan to detect cassava leaves has been developed using a customized fine-tuned deep learning model. Five categories of diseases are used in this study: Cassava Brown Steak Disease (CBSD), Cassava Green Mite (CGM), Cassava Bacterial Blight (CBB), and Cassava Mosaic Disease (CMD) and Health. The results showed an accuracy on the test data obtained was over 77% on original problem using clever data augmentation without affecting the scope of this problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的木薯叶病检测
在这项研究中,使用定制的微调深度学习模型开发了一个检测木薯叶子的聪明计划。本研究使用了五类疾病:木薯褐牛排病(CBSD)、木薯绿螨病(CGM)、木薯细菌性枯萎病(CBB)和木薯花叶病(CMD)与健康。结果表明,在不影响问题范围的情况下,对原始问题使用智能数据增强获得的测试数据的准确性超过77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Reflecting Surfaces in UAV-Assisted 6G Networks: An Approach for Enhanced Propagation and Spectral Characteristics Bimetals (Au-Pd, Au-Pt) loaded WO3 hybridized graphene oxide FET sensors for selective detection of acetone Using UML to Describe the Development of Software Products Using an Object Approach A Machine Learning Approach for the Early Detection of Dementia VLSI Implementation of a Real-time Modified Decision-based Algorithm for Impulse Noise Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1