Using Stylometry to Attribute Programmers and Writers

R. Greenstadt
{"title":"Using Stylometry to Attribute Programmers and Writers","authors":"R. Greenstadt","doi":"10.1145/3082031.3092567","DOIUrl":null,"url":null,"abstract":"In this talk, I will discuss my lab's work in the emerging field of adversarial stylometry and machine learning. Machine learning algorithms are increasingly being used in security and privacy domains, in areas that go beyond intrusion or spam detection. For example, in digital forensics, questions often arise about the authors of documents: their identity, demographic background, and whether they can be linked to other documents. The field of stylometry uses linguistic features and machine learning techniques to answer these questions. We have applied stylometry to difficult domains such as underground hacker forums, open source projects (code), and tweets. I will discuss our Doppelgnger Finder algorithm, which enables us to group Sybil accounts on underground forums and detect blogs from Twitter feeds and reddit comments. In addition, I will discuss our work attributing unknown source code and binaries.","PeriodicalId":431672,"journal":{"name":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3082031.3092567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this talk, I will discuss my lab's work in the emerging field of adversarial stylometry and machine learning. Machine learning algorithms are increasingly being used in security and privacy domains, in areas that go beyond intrusion or spam detection. For example, in digital forensics, questions often arise about the authors of documents: their identity, demographic background, and whether they can be linked to other documents. The field of stylometry uses linguistic features and machine learning techniques to answer these questions. We have applied stylometry to difficult domains such as underground hacker forums, open source projects (code), and tweets. I will discuss our Doppelgnger Finder algorithm, which enables us to group Sybil accounts on underground forums and detect blogs from Twitter feeds and reddit comments. In addition, I will discuss our work attributing unknown source code and binaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用文体学给程序员和作家定性
在这次演讲中,我将讨论我的实验室在对抗性文体学和机器学习的新兴领域的工作。机器学习算法越来越多地用于安全和隐私领域,而不仅仅是入侵或垃圾邮件检测。例如,在数字取证中,经常会出现关于文件作者的问题:他们的身份、人口统计背景以及他们是否可以与其他文件相关联。文体学领域使用语言特征和机器学习技术来回答这些问题。我们已经将文体学应用于复杂的领域,如地下黑客论坛、开源项目(代码)和tweet。我将讨论我们的Doppelgnger Finder算法,它使我们能够在地下论坛上对Sybil帐户进行分组,并从Twitter提要和reddit评论中检测博客。此外,我将讨论我们对未知源代码和二进制文件的归属工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined and Calibrated Features for Steganalysis of Motion Vector-Based Steganography in H.264/AVC Information-theoretic Bounds of Resampling Forensics: New Evidence for Traces Beyond Cyclostationarity Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security Text Steganography with High Embedding Rate: Using Recurrent Neural Networks to Generate Chinese Classic Poetry Nonlinear Feature Normalization in Steganalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1