Random Forest Regression for Predicting Metamaterial Antenna Parameters

Nazmia Kurniawati, Dianing Novita Nurmala Putri, Yuli Kurnia Ningsih
{"title":"Random Forest Regression for Predicting Metamaterial Antenna Parameters","authors":"Nazmia Kurniawati, Dianing Novita Nurmala Putri, Yuli Kurnia Ningsih","doi":"10.1109/ICIEE49813.2020.9276899","DOIUrl":null,"url":null,"abstract":"Metamaterial is an artificial substance that has unique properties such as negative refractive index and negative permittivity that do not exist naturally in the universe. Metamaterial has been extensively used in antenna applications because of its numerous advantages. In antenna applications, the Split Ring Resonator (SRR) structure in the metamaterial antenna can improve antenna performance. In this paper, we use random forest regression which is part of machine learning algorithm to predict antenna parameters, such as gain, Voltage Standing Wave Ratio (VSWR), bandwidth, and return loss. Based on prediction result, number of estimator that resulted in lowest MAE for gain is 3 while for MSE is 2. For VSWR the lowest MAE and MSE is reached when the number of estimator is 8. For bandwidth, lowest MAE is achieved when the number of estimator is 1 while for MSE is 8. Return loss reaches the lowest MAE and MSE when the number of estimator is 24.","PeriodicalId":127106,"journal":{"name":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEE49813.2020.9276899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Metamaterial is an artificial substance that has unique properties such as negative refractive index and negative permittivity that do not exist naturally in the universe. Metamaterial has been extensively used in antenna applications because of its numerous advantages. In antenna applications, the Split Ring Resonator (SRR) structure in the metamaterial antenna can improve antenna performance. In this paper, we use random forest regression which is part of machine learning algorithm to predict antenna parameters, such as gain, Voltage Standing Wave Ratio (VSWR), bandwidth, and return loss. Based on prediction result, number of estimator that resulted in lowest MAE for gain is 3 while for MSE is 2. For VSWR the lowest MAE and MSE is reached when the number of estimator is 8. For bandwidth, lowest MAE is achieved when the number of estimator is 1 while for MSE is 8. Return loss reaches the lowest MAE and MSE when the number of estimator is 24.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林回归预测超材料天线参数
超材料是一种具有负折射率和负介电常数等宇宙中不存在的独特性质的人造物质。超材料以其众多的优点在天线领域得到了广泛的应用。在天线应用中,超材料天线中的劈裂环谐振器(SRR)结构可以提高天线的性能。在本文中,我们使用随机森林回归作为机器学习算法的一部分来预测天线参数,如增益,电压驻波比(VSWR),带宽和回波损耗。根据预测结果,对增益最小MAE的估计数为3个,对MSE的估计数为2个。对于VSWR,当估计器个数为8时,MAE和MSE达到最低。对于带宽,当估计器个数为1时MAE最低,而MSE为8时MAE最低。当估计器个数为24时,回波损失达到最低的MAE和MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nutrient Film Technique for Automatic Hydroponic System Based on Arduino Performance Evaluation of Body Temperature Data Transmission Using Turbo Codes in 4G-LTE Design of Prototype Measuring Motor Vehicles Velocity Using Hall Effect Sensor Series A-1302 based On Arduino Mega2560 Design of a Microstrip Antenna Array Dual Band Using Stub Method Feasibility Study for Development of Micro Grid System in Rural Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1