Mixture conditional estimation using genetic algorithms

Nariman Majdi-Nasab, M. Analoui
{"title":"Mixture conditional estimation using genetic algorithms","authors":"Nariman Majdi-Nasab, M. Analoui","doi":"10.1109/ISSPA.2001.950244","DOIUrl":null,"url":null,"abstract":"There are several methods for analyzing and estimating parameters for mixture models. These approaches seek to optimize various aspects of mixture model estimation, such as accuracy and computation cost. We present a new approach for estimating parameters of a Gaussian mixture model by genetic algorithms (GA). GA are adaptive search techniques designed to find near-optimal solutions of large-scale optimization problems with multiple local maxima. It is shown that using GA can find mixture model parameters accurately and efficiently for noisy and noiseless data sets.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

There are several methods for analyzing and estimating parameters for mixture models. These approaches seek to optimize various aspects of mixture model estimation, such as accuracy and computation cost. We present a new approach for estimating parameters of a Gaussian mixture model by genetic algorithms (GA). GA are adaptive search techniques designed to find near-optimal solutions of large-scale optimization problems with multiple local maxima. It is shown that using GA can find mixture model parameters accurately and efficiently for noisy and noiseless data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合条件估计的遗传算法
混合模型的参数分析和估计有几种方法。这些方法寻求优化混合模型估计的各个方面,如精度和计算成本。提出了一种用遗传算法估计高斯混合模型参数的新方法。遗传算法是一种自适应搜索技术,用于寻找具有多个局部极大值的大规模优化问题的近最优解。实验结果表明,采用遗传算法可以准确有效地找到有噪声和无噪声的混合模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data Statistical analysis of neural network modeling and identification of nonlinear systems with memory Design of oversampled uniform DFT filter banks with reduced inband aliasing and delay constraints Identification of DCT signs for sub-block coding Skin color detection for face localization in human-machine communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1