Research on an Improved Association Rule Mining Algorithm

Hongfei Xu, Xuesong Liang, Wei Cui, Wei Liu
{"title":"Research on an Improved Association Rule Mining Algorithm","authors":"Hongfei Xu, Xuesong Liang, Wei Cui, Wei Liu","doi":"10.1109/ICPDS47662.2019.9017168","DOIUrl":null,"url":null,"abstract":"Data mining association rules is an important role of data mining because of its wide applicability in market analysis by expressing how tangible products and services relate to each other and how rend to group together. The paper proposed Apriori algorithm of riddling compression. And has carried on the simulation, the result demonstrated the Apriori algorithm of riddling compression can improve the efficiency greatly. It can greatly reduce the candidate frequent itemsets, keeps the completion of frequent itemsets, reduces the cost of computing, and improve the efficiency of algorithm.","PeriodicalId":130202,"journal":{"name":"2019 IEEE International Conference on Power Data Science (ICPDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Power Data Science (ICPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPDS47662.2019.9017168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data mining association rules is an important role of data mining because of its wide applicability in market analysis by expressing how tangible products and services relate to each other and how rend to group together. The paper proposed Apriori algorithm of riddling compression. And has carried on the simulation, the result demonstrated the Apriori algorithm of riddling compression can improve the efficiency greatly. It can greatly reduce the candidate frequent itemsets, keeps the completion of frequent itemsets, reduces the cost of computing, and improve the efficiency of algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的关联规则挖掘算法研究
数据挖掘关联规则是数据挖掘中的一个重要角色,它通过表达有形产品和服务之间的相互关系以及如何倾向于组合在一起,在市场分析中具有广泛的适用性。提出了谜语压缩的Apriori算法。并进行了仿真,结果表明Apriori算法可以大大提高谜语压缩的效率。它可以大大减少候选频繁项集,保持频繁项集的完备性,降低计算成本,提高算法效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
G-Key: An Authentication Technique for Mobile Devices Based on Gravity Sensors * Thermal-Electromagnetic Analysis of Automotive IPMSM on Driving Cycles The Amplitude & Frequency Bilateral Modulation Characteristics of Wind Speed Signal An Improved Sequential Pattern mining Algorithm based on Large Dataset Analysis and Measures of 10kV Bus PT Breakdown Accident
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1