Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi
{"title":"A machine learning approach to modeling power and performance of chip multiprocessors","authors":"Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi","doi":"10.1109/ICCD.2011.6081374","DOIUrl":null,"url":null,"abstract":"Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.