A machine learning approach to modeling power and performance of chip multiprocessors

Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi
{"title":"A machine learning approach to modeling power and performance of chip multiprocessors","authors":"Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi","doi":"10.1109/ICCD.2011.6081374","DOIUrl":null,"url":null,"abstract":"Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习方法对芯片多处理器的功率和性能进行建模
由于仿真时间长且随内核缩放呈超线性增长,通过传统的穷极仿真方法来探索芯片多处理器(cmp)广阔的微架构设计空间是不切实际的。基于核的统计机器学习算法可以潜在地帮助预测与CMP设计参数非线性依赖的多个性能指标。在本文中,我们描述和评估了一个机器学习框架,该框架使用核典型相关分析(KCCA)来预测cmp的功耗和性能。具体来说,我们关注的是针对数据包处理的高度多线程CMP的微架构建模。我们使用周期精确的CMP模拟器来生成构建模型所需的训练样本。尽管只采样了0.016%的设计空间,但我们观察到KCCA预测处理器功耗和性能的中位数误差为6-10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid system level power consumption estimation for FPGA-based MPSoC Modeling and design of a nanoscale memory cell for hardening to a single event with multiple node upset Using stochastic computing to implement digital image processing algorithms Energy-efficient multi-level cell phase-change memory system with data encoding Positive Davio-based synthesis algorithm for reversible logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1