Efficient and robust approach of iris recognition through Fisher Linear Discriminant Analysis method and Principal Component Analysis method

Q. Emad ul Haq, M. Javed, Q. Sami ul Haq
{"title":"Efficient and robust approach of iris recognition through Fisher Linear Discriminant Analysis method and Principal Component Analysis method","authors":"Q. Emad ul Haq, M. Javed, Q. Sami ul Haq","doi":"10.1109/INMIC.2008.4777739","DOIUrl":null,"url":null,"abstract":"Iris recognition has emerged as a vital and tested methodology for research investigations and routine security applications in the context of increasing security requirements. Thus biometrics has attained a very significant place in human verification and identification. In this paper, an efficient and precised methodology is brought out through using Fisher linear discriminant analysis method and principal component analysis method. These methodologies create different sections in low dimensional sub space. The suggested system in this research work contains four components i.e. preprocessing, segmentation, feature extraction and matching. The preprocessing part again consist of pupil localization, image refinement, iris localization and normalization procedures. The suggested algorithm in this research paper was tested on CASIA Iris image database. The soundness and time efficiency of the suggested algorithm proves it as perfect technique for real time applications.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Iris recognition has emerged as a vital and tested methodology for research investigations and routine security applications in the context of increasing security requirements. Thus biometrics has attained a very significant place in human verification and identification. In this paper, an efficient and precised methodology is brought out through using Fisher linear discriminant analysis method and principal component analysis method. These methodologies create different sections in low dimensional sub space. The suggested system in this research work contains four components i.e. preprocessing, segmentation, feature extraction and matching. The preprocessing part again consist of pupil localization, image refinement, iris localization and normalization procedures. The suggested algorithm in this research paper was tested on CASIA Iris image database. The soundness and time efficiency of the suggested algorithm proves it as perfect technique for real time applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Fisher线性判别分析和主成分分析的虹膜识别方法
在日益增长的安全需求背景下,虹膜识别已成为研究调查和常规安全应用的重要和经过测试的方法。因此,生物识别技术在人体验证和身份识别中占有非常重要的地位。本文通过运用Fisher线性判别分析方法和主成分分析方法,提出了一种有效而精确的方法。这些方法在低维子空间中创建不同的部分。本研究提出的系统包括预处理、分割、特征提取和匹配四个部分。预处理部分包括瞳孔定位、图像细化、虹膜定位和归一化等步骤。本文提出的算法在CASIA虹膜图像数据库上进行了测试。该算法的有效性和实时性证明了它是实时应用的理想技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1