Parametric regression methodology and optimized control for DC motor

Jeremias L. Botelho, J. R. Oliveira, Marcio R. C. Reis, Felippe S. Silva, L. A. do Couto, W. R. H. Araujo, W. Calixto, Alana S. Magalhães, G. Furriel
{"title":"Parametric regression methodology and optimized control for DC motor","authors":"Jeremias L. Botelho, J. R. Oliveira, Marcio R. C. Reis, Felippe S. Silva, L. A. do Couto, W. R. H. Araujo, W. Calixto, Alana S. Magalhães, G. Furriel","doi":"10.1109/EPE.2017.7967296","DOIUrl":null,"url":null,"abstract":"This paper presents a speed control for a DC motor. Despite the unknown parameters of the plant to be controlled, these parameters are found using a system identification method. The methodology implemented in this study is known as parametric regression and is based on an optimization technique. This optimization, through its fitness function, allows to find the system characteristics in order to make possible the system control. This control is applied to the DC motor speed through a cascade PI controller, acting on the motor current. Besides, the controller parameters are found through deterministic optimization technique, using the Quasi-Newton method. Simulation and experimental results are presented in order to validate the study and make possible the control of an unknown parameters system.","PeriodicalId":201464,"journal":{"name":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2017.7967296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a speed control for a DC motor. Despite the unknown parameters of the plant to be controlled, these parameters are found using a system identification method. The methodology implemented in this study is known as parametric regression and is based on an optimization technique. This optimization, through its fitness function, allows to find the system characteristics in order to make possible the system control. This control is applied to the DC motor speed through a cascade PI controller, acting on the motor current. Besides, the controller parameters are found through deterministic optimization technique, using the Quasi-Newton method. Simulation and experimental results are presented in order to validate the study and make possible the control of an unknown parameters system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直流电机参数回归方法及优化控制
本文介绍了一种直流电机转速控制方法。尽管待控制装置的参数未知,但这些参数是使用系统识别方法找到的。在这项研究中实施的方法被称为参数回归,是基于优化技术。这种优化,通过它的适应度函数,可以找到系统的特性,从而使系统控制成为可能。该控制通过级联PI控制器应用于直流电机速度,作用于电机电流。此外,采用准牛顿方法,通过确定性优化技术确定控制器参数。仿真和实验结果验证了本文的研究,使对未知参数系统的控制成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of different concepts of traction drives with regard to high-speed PMSM Under frequency load shedding threats in island operation AC and DC response of heterojunction a-SiC/c-Si for PV application Features of controlled switching under normal and emergency operating conditions in medium voltage networks CFD-based evaluation of current-carrying capacity of power cables installed in free air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1