Bounds on Channel Parameter Estimation with 1-Bit Quantization and Oversampling

Martin Schlüter, Meik Dörpinghaus, G. Fettweis
{"title":"Bounds on Channel Parameter Estimation with 1-Bit Quantization and Oversampling","authors":"Martin Schlüter, Meik Dörpinghaus, G. Fettweis","doi":"10.1109/SPAWC.2018.8445905","DOIUrl":null,"url":null,"abstract":"In the design of energy-efficient communication systems with very high bandwidths, the analog-to-digital converter (ADC) plays a crucial role, since its energy consumption grows exponentially with the number of quantization bits. However, high resolution in time domain is less difficult to achieve than high resolution in amplitude domain. This motivates for the design of receivers with L-bit quantization and oversampling w.r.t. Nyquist rate. On the downside, standard receiver synchronization algorithms cannot be applied, since L-bit quantization is a highly non-linear function. To understand the channel parameter estimation performance of such a receiver, the Fisher information (FI) is a helpful measure. Since the closed form evaluation of the FI is not possible for correlated Gaussian noise, we give a lower bound that is an extension of a lower bound by Stein et al. to complex valued channel outputs. If the noise is white, the lower bound is tight. Furthermore, we apply the lower bound for the evaluation of the performance of carrier phase estimation of a QPSK based communication system. We show that for any SNR level oversampling reduces the performance loss due to 1-bit quantization. In the mid and low SNR regime, oversampling reduces the performance loss beyond the loss of 2π encountered in case of 1-bit quantization at Nyquist sampling in the low SNR regime.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In the design of energy-efficient communication systems with very high bandwidths, the analog-to-digital converter (ADC) plays a crucial role, since its energy consumption grows exponentially with the number of quantization bits. However, high resolution in time domain is less difficult to achieve than high resolution in amplitude domain. This motivates for the design of receivers with L-bit quantization and oversampling w.r.t. Nyquist rate. On the downside, standard receiver synchronization algorithms cannot be applied, since L-bit quantization is a highly non-linear function. To understand the channel parameter estimation performance of such a receiver, the Fisher information (FI) is a helpful measure. Since the closed form evaluation of the FI is not possible for correlated Gaussian noise, we give a lower bound that is an extension of a lower bound by Stein et al. to complex valued channel outputs. If the noise is white, the lower bound is tight. Furthermore, we apply the lower bound for the evaluation of the performance of carrier phase estimation of a QPSK based communication system. We show that for any SNR level oversampling reduces the performance loss due to 1-bit quantization. In the mid and low SNR regime, oversampling reduces the performance loss beyond the loss of 2π encountered in case of 1-bit quantization at Nyquist sampling in the low SNR regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1位量化和过采样信道参数估计的边界
在高带宽的高能效通信系统设计中,模数转换器(ADC)的能量消耗随着量化比特数的增加呈指数级增长,它起着至关重要的作用。然而,时域的高分辨率比幅域的高分辨率更容易实现。这激发了l位量化和奈奎斯特率过采样接收机的设计。缺点是,标准的接收器同步算法不能应用,因为l位量化是一个高度非线性的函数。为了了解这种接收机的信道参数估计性能,费雪信息(FI)是一个有用的度量。由于相关高斯噪声不可能对FI进行封闭形式的评估,因此我们给出了一个下界,该下界是Stein等人对复值通道输出的下界的扩展。如果噪声是白色的,则下界是紧的。此外,我们应用下界来评估基于QPSK的通信系统的载波相位估计性能。我们表明,对于任何信噪比水平过采样减少性能损失由于1位量化。在中低信噪比条件下,过采样降低了性能损失,超过了低信噪比条件下奈奎斯特采样1位量化时所遇到的2π损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1