Convolution-augmented external attention model for time domain speech separation

Yuning Zhang, He Yan, Linshan Du, Mengxue Li
{"title":"Convolution-augmented external attention model for time domain speech separation","authors":"Yuning Zhang, He Yan, Linshan Du, Mengxue Li","doi":"10.1117/12.2671718","DOIUrl":null,"url":null,"abstract":"The ability of the separator to capture the context-detailed features of speech signals and the number of parameters directly affect the accuracy and efficiency of speech separation in time-domain speech separation network (TasNet). This paper combines lightweight external attention with convolution and extends external attention to channel dimension; while satisfying the fine-grained extraction and modeling of spatial-channel correlation, it maintains small parameters and computation. Convolutional position coding is also used to integrate the contextual relationship and relative position information of speech features better. The above module then applies as a separator in the encoder-decoder structure based on TasNet, and a new convolution-augment external attention model for time-domain speech separation is proposed: ExConNet. The comparative experimental results show that ExConNet achieves considerable accuracy of speech separation, while its model parameters and calculation amount are significantly reduced, which can better meet the need for efficiency of speech separation.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of the separator to capture the context-detailed features of speech signals and the number of parameters directly affect the accuracy and efficiency of speech separation in time-domain speech separation network (TasNet). This paper combines lightweight external attention with convolution and extends external attention to channel dimension; while satisfying the fine-grained extraction and modeling of spatial-channel correlation, it maintains small parameters and computation. Convolutional position coding is also used to integrate the contextual relationship and relative position information of speech features better. The above module then applies as a separator in the encoder-decoder structure based on TasNet, and a new convolution-augment external attention model for time-domain speech separation is proposed: ExConNet. The comparative experimental results show that ExConNet achieves considerable accuracy of speech separation, while its model parameters and calculation amount are significantly reduced, which can better meet the need for efficiency of speech separation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时域语音分离的卷积增强外部注意模型
在时域语音分离网络(TasNet)中,分隔符捕捉语音信号上下文细节特征的能力和参数的数量直接影响语音分离的准确性和效率。将轻量级外部注意与卷积相结合,将外部注意扩展到通道维度;在满足空间信道相关的细粒度提取和建模的同时,保持了较小的参数和计算量。卷积位置编码也用于更好地整合语音特征的上下文关系和相对位置信息。然后将上述模块应用于基于TasNet的编码器-解码器结构中,并提出了一种新的卷积增强的时域语音分离外部注意模型:ExConNet。对比实验结果表明,ExConNet在实现了较高的语音分离精度的同时,其模型参数和计算量显著减少,能够更好地满足语音分离效率的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on intelligent risk control of banks based on BP neural network Drainage pipe defect identification based on convolutional neural network An exoskeleton rehabilitation system to train hand function after stroke Research on TCP congestion window smoothing control algorithm based on traffic awareness Research on digital twin-based capacitive voltage transformer operating condition monitoring method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1