Ambulance Dispatch via Deep Reinforcement Learning

Kunpeng Liu, Xiaolin Li, C. Zou, Haibo Huang, Yanjie Fu
{"title":"Ambulance Dispatch via Deep Reinforcement Learning","authors":"Kunpeng Liu, Xiaolin Li, C. Zou, Haibo Huang, Yanjie Fu","doi":"10.1145/3397536.3422204","DOIUrl":null,"url":null,"abstract":"In this paper, we solve the ambulance dispatch problem with a reinforcement learning oriented strategy. The ambulance dispatch problem is defined as deciding which ambulance to pick up which patient. Traditional studies on ambulance dispatch mainly focus on predefined protocols and are verified on simple simulation data, which are not flexible enough when facing the dynamically changing real-world cases. In this paper, we propose an efficient ambulance dispatch method based on the reinforcement learning framework, i.e., Multi-Agent Q-Network with Experience Replay(MAQR). Specifically, we firstly reformulate the ambulance dispatch problem with a multi-agent reinforcement learning framework, and then design the state, action, and reward function correspondingly for the framework. Thirdly, we design a simulator that controls ambulance status, generates patient requests and interacts with ambulances. Finally, we design extensive experiments to demonstrate the superiority of the proposed method.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we solve the ambulance dispatch problem with a reinforcement learning oriented strategy. The ambulance dispatch problem is defined as deciding which ambulance to pick up which patient. Traditional studies on ambulance dispatch mainly focus on predefined protocols and are verified on simple simulation data, which are not flexible enough when facing the dynamically changing real-world cases. In this paper, we propose an efficient ambulance dispatch method based on the reinforcement learning framework, i.e., Multi-Agent Q-Network with Experience Replay(MAQR). Specifically, we firstly reformulate the ambulance dispatch problem with a multi-agent reinforcement learning framework, and then design the state, action, and reward function correspondingly for the framework. Thirdly, we design a simulator that controls ambulance status, generates patient requests and interacts with ambulances. Finally, we design extensive experiments to demonstrate the superiority of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度强化学习调度救护车
在本文中,我们用一种面向强化学习的策略来解决救护车调度问题。救护车调度问题被定义为决定哪辆救护车接哪个病人。传统的救护车调度研究主要集中在预定义的协议上,并在简单的仿真数据上进行验证,在面对动态变化的现实情况时不够灵活。在本文中,我们提出了一种基于强化学习框架的高效救护车调度方法,即多agent Q-Network with Experience Replay(MAQR)。具体来说,我们首先用一个多智能体强化学习框架重新表述救护车调度问题,然后为该框架设计相应的状态函数、动作函数和奖励函数。第三,我们设计了一个模拟器来控制救护车状态,生成病人的请求,并与救护车进行交互。最后,我们设计了大量的实验来证明所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1