Work In Progress: Machine Learning In Robotics

Greg Yera, Alexander Strong, Hannah Leleux, T. Holcombe, Colin Smith, Timothy Gonzales
{"title":"Work In Progress: Machine Learning In Robotics","authors":"Greg Yera, Alexander Strong, Hannah Leleux, T. Holcombe, Colin Smith, Timothy Gonzales","doi":"10.1145/2808006.2808044","DOIUrl":null,"url":null,"abstract":"This work investigates combining reinforcement learning and radial basis function neural network (RBFNN) learning to improve the performance of a robot that learns to perform its task. A simple task is given, and the simulator uses reinforcement learning to generate a q-learning table, which is then used to generate a neural network. Analysis is then done to determine if the combination improves the robots performance of its task","PeriodicalId":431742,"journal":{"name":"Proceedings of the 16th Annual Conference on Information Technology Education","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th Annual Conference on Information Technology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808006.2808044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work investigates combining reinforcement learning and radial basis function neural network (RBFNN) learning to improve the performance of a robot that learns to perform its task. A simple task is given, and the simulator uses reinforcement learning to generate a q-learning table, which is then used to generate a neural network. Analysis is then done to determine if the combination improves the robots performance of its task
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正在进行的工作:机器人中的机器学习
这项工作研究了将强化学习和径向基函数神经网络(RBFNN)学习相结合,以提高机器人学习执行任务的性能。给出一个简单的任务,模拟器使用强化学习生成一个q-学习表,然后使用该表生成一个神经网络。然后进行分析,以确定该组合是否提高了机器人的任务性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Programming in Scratch and Mathematics: Augmenting Your Geometry Curriculum, Today! Experiential Learning Business/Industry and Education Wants and Needs Session details: SIGITE Paper Session 2 The Cyber Education Project and IT IAS Curriculum The CCL-Parallax Programmable Badge: Learning with Low-Cost, Communicative Wearable Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1