{"title":"A Multi-agent Learning Model for Service Composition","authors":"Wenbo Xu, Jian Cao, Haiyan Zhao, Lei Wang","doi":"10.1109/APSCC.2012.44","DOIUrl":null,"url":null,"abstract":"Agent technology has gained increasing popularity in service oriented architecture (SOA) because of its features of autonomy, initiative, interactivity, persistency and adaptability. There are already a plenty of implementations which integrate SOA with multi-agent systems (MAS). The ability of learning is a significant feature of MAS. This paper proposes a learning model of the service-oriented MAS for the service composition problem. It adopts the principle of reinforcement learning and is based on the Markov game and Q-learning. The reward of the learning procedure is determined by the QoS parameters such as responding time and cost. The mechanism of multi-agent leaning for service composition is introduced. The results of experiments and case study show that our multi-agent learning approach can reach convergence efficiently and it can also accelerate the service composition process based on the knowledge continuously learned from past composition experiences.","PeriodicalId":256842,"journal":{"name":"2012 IEEE Asia-Pacific Services Computing Conference","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Asia-Pacific Services Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSCC.2012.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Agent technology has gained increasing popularity in service oriented architecture (SOA) because of its features of autonomy, initiative, interactivity, persistency and adaptability. There are already a plenty of implementations which integrate SOA with multi-agent systems (MAS). The ability of learning is a significant feature of MAS. This paper proposes a learning model of the service-oriented MAS for the service composition problem. It adopts the principle of reinforcement learning and is based on the Markov game and Q-learning. The reward of the learning procedure is determined by the QoS parameters such as responding time and cost. The mechanism of multi-agent leaning for service composition is introduced. The results of experiments and case study show that our multi-agent learning approach can reach convergence efficiently and it can also accelerate the service composition process based on the knowledge continuously learned from past composition experiences.