Additive Manufacturing Process-Induced Wing Skin Deformation and Effects on Aerodynamic Performance

Justin D. Valenti, Joseph Barolai, J. Cole, M. Yukish
{"title":"Additive Manufacturing Process-Induced Wing Skin Deformation and Effects on Aerodynamic Performance","authors":"Justin D. Valenti, Joseph Barolai, J. Cole, M. Yukish","doi":"10.1115/imece2022-96569","DOIUrl":null,"url":null,"abstract":"\n The objective of this study is to characterize the trade space for the structural design of small uncrewed aerial vehicle wings fabricated using Material Extrusion Additive Manufacturing, specifically the trade-off between maintaining the wing external shape while minimizing its internal structure. Beam bending analysis shows that the structural requirements associated with flight loads are easily met with a single perimeter extrusion monocoque construction, however this approach leads to large, unsupported, thin-walled structures that can deform during the build process, creating a potential need for additional structure to maintain wing shape. To characterize the relationship between structure/weight and wing deformation, wing sections were fabricated with varying internal structures for two airfoil shapes. Weight and 3-D laser measurements were taken of the printed parts to capture the final as-built geometry. The as-built geometries were then compared to the as-designed geometries to quantify the deformation, and a coupled viscous-inviscid flow solver was used to determine the aerodynamic effects. The results indicate that while significant aerodynamic performance penalties exist for the monocoque construction, a small amount of well-placed internal structure provides sufficient improvement at minimal weight penalty. Results also showed that less internal structure is required to minimize deformation for an airfoil with larger initial curvature.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to characterize the trade space for the structural design of small uncrewed aerial vehicle wings fabricated using Material Extrusion Additive Manufacturing, specifically the trade-off between maintaining the wing external shape while minimizing its internal structure. Beam bending analysis shows that the structural requirements associated with flight loads are easily met with a single perimeter extrusion monocoque construction, however this approach leads to large, unsupported, thin-walled structures that can deform during the build process, creating a potential need for additional structure to maintain wing shape. To characterize the relationship between structure/weight and wing deformation, wing sections were fabricated with varying internal structures for two airfoil shapes. Weight and 3-D laser measurements were taken of the printed parts to capture the final as-built geometry. The as-built geometries were then compared to the as-designed geometries to quantify the deformation, and a coupled viscous-inviscid flow solver was used to determine the aerodynamic effects. The results indicate that while significant aerodynamic performance penalties exist for the monocoque construction, a small amount of well-placed internal structure provides sufficient improvement at minimal weight penalty. Results also showed that less internal structure is required to minimize deformation for an airfoil with larger initial curvature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造过程诱导的机翼蒙皮变形及其对气动性能的影响
本研究的目的是表征使用材料挤压增材制造制造的小型无人驾驶飞行器机翼结构设计的贸易空间,特别是在保持机翼外部形状和最小化其内部结构之间的权衡。梁弯曲分析表明,与飞行载荷相关的结构要求很容易通过单一的周长挤压单体结构来满足,但是这种方法会导致大型、无支撑、薄壁结构,在建造过程中可能会变形,从而可能需要额外的结构来保持机翼的形状。为了表征结构/重量与机翼变形之间的关系,对两种翼型形状制作了具有不同内部结构的机翼截面。对打印部件进行重量和三维激光测量,以捕获最终建成的几何形状。然后将构建的几何形状与设计的几何形状进行比较,以量化变形,并使用粘-无粘耦合流动求解器来确定气动效应。结果表明,尽管单壳式结构存在明显的气动性能损失,但少量放置良好的内部结构以最小的重量损失提供了足够的改善。结果还表明,较少的内部结构是需要尽量减少变形的翼型与较大的初始曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Strain Rate Dependency of the Mechanical Properties of Unidirectional CFRE Materials Thermo-Mechanical Process Modeling of Additive Friction Stir Deposition of Ti-6Al-4V Alloy Nonlinear Transient Response of Isotropic and Composite Structures With Variable Kinematic Beam and Plate Finite Elements Bolt Loosening Detection for a Steel Frame Multi-Story Structure Based on Deep Learning and Digital Image Processing Preparation of Hybrid Alkaline Cement Based on Natural Zeolite As Sustainable Building Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1