Stefano Carnà, Serena Ferracci, F. Quaglia, Alessandro Pellegrini
{"title":"Fight Hardware with Hardware: Systemwide Detection and Mitigation of Side-channel Attacks Using Performance Counters","authors":"Stefano Carnà, Serena Ferracci, F. Quaglia, Alessandro Pellegrini","doi":"10.1145/3519601","DOIUrl":null,"url":null,"abstract":"We present a kernel-level infrastructure that allows systemwide detection of malicious applications attempting to exploit cache-based side-channel attacks to break the process confinement enforced by standard operating systems. This infrastructure relies on hardware performance counters to collect information at runtime from all applications running on the machine. High-level detection metrics are derived from these measurements to maximize the likelihood of promptly detecting a malicious application. Our experimental assessment shows that we can catch a large family of side-channel attacks with a significantly reduced overhead. We also discuss countermeasures that can be enacted once a process is suspected of carrying out a side-channel attack to increase the overall tradeoff between the system’s security level and the delivered performance under non-suspected process executions.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present a kernel-level infrastructure that allows systemwide detection of malicious applications attempting to exploit cache-based side-channel attacks to break the process confinement enforced by standard operating systems. This infrastructure relies on hardware performance counters to collect information at runtime from all applications running on the machine. High-level detection metrics are derived from these measurements to maximize the likelihood of promptly detecting a malicious application. Our experimental assessment shows that we can catch a large family of side-channel attacks with a significantly reduced overhead. We also discuss countermeasures that can be enacted once a process is suspected of carrying out a side-channel attack to increase the overall tradeoff between the system’s security level and the delivered performance under non-suspected process executions.