An Adaptive Filtering Technique for Segmentation of Tuberculosis in Microscopic Images

Z. Khan, Waseem Ullah, Amin Ullah, Seungmin Rho, Mi Young Lee, S. Baik
{"title":"An Adaptive Filtering Technique for Segmentation of Tuberculosis in Microscopic Images","authors":"Z. Khan, Waseem Ullah, Amin Ullah, Seungmin Rho, Mi Young Lee, S. Baik","doi":"10.1145/3443279.3443283","DOIUrl":null,"url":null,"abstract":"Tuberculosis disease is one of the most leading cause of fatality worldwide. however, it can be reduced if diagnosed and treated on time. Normally the method name Ziehl-Neelsen is used to diagnose Tuberculosis and a human specialist analyzes it using an optical microscope to find tuberculosis bacilli. Since this process is time-consuming, an automatic bacilli recognition system allows the diagnosis process faster. In this work, an automatic tuberculosis bacilli segmentation system is developed. Initially, the input image is preprocessed by applying adaptive mean filter (AMD) to remove impulse noise and power law transformation to enhance the image then transform the color space from RGB to HSV. The HSV color space is more suitable for image processing because each element is isolated in it. Next, we employed the multi-level thresholding algorithm to correctly segment each bacillus in the input sample and improved 2.13% accuracy when compared to state-of-the-art techniques.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Tuberculosis disease is one of the most leading cause of fatality worldwide. however, it can be reduced if diagnosed and treated on time. Normally the method name Ziehl-Neelsen is used to diagnose Tuberculosis and a human specialist analyzes it using an optical microscope to find tuberculosis bacilli. Since this process is time-consuming, an automatic bacilli recognition system allows the diagnosis process faster. In this work, an automatic tuberculosis bacilli segmentation system is developed. Initially, the input image is preprocessed by applying adaptive mean filter (AMD) to remove impulse noise and power law transformation to enhance the image then transform the color space from RGB to HSV. The HSV color space is more suitable for image processing because each element is isolated in it. Next, we employed the multi-level thresholding algorithm to correctly segment each bacillus in the input sample and improved 2.13% accuracy when compared to state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于显微图像结核分割的自适应滤波技术
结核病是全世界最主要的死亡原因之一。然而,如果及时诊断和治疗,它可以减少。通常使用Ziehl-Neelsen方法诊断结核病,由人类专家使用光学显微镜对其进行分析以发现结核杆菌。由于这个过程很耗时,自动杆菌识别系统可以使诊断过程更快。本文研制了结核杆菌自动分割系统。首先对输入图像进行预处理,采用自适应均值滤波(AMD)去除脉冲噪声和幂律变换增强图像,然后将色彩空间由RGB变换为HSV。HSV色彩空间更适合于图像处理,因为每个元素在其中是隔离的。接下来,我们采用多级阈值算法来正确分割输入样本中的每种芽孢杆菌,与最先进的技术相比,准确率提高了2.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranking Hotel Reviews Based on User's Aspects Importance and Opinions Research on Information Extraction of Municipal Solid Waste Crisis using BERT-LSTM-CRF A Classification on Different Aspects of User Modelling in Personalized Web Search Automatic Summarization of Stock Market News Articles IME-Spell: Chinese Spelling Check based on Input Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1