Athlete pose estimation by non-sequential key-frame propagation

Mykyta Fastovets, Jean-Yves Guillemaut, A. Hilton
{"title":"Athlete pose estimation by non-sequential key-frame propagation","authors":"Mykyta Fastovets, Jean-Yves Guillemaut, A. Hilton","doi":"10.1145/2668904.2668938","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of estimating human pose in challenging monocular sports videos, where manual intervention is often required in order to obtain useful results. Fully automatic approaches focus on developing inference algorithms and probabilistic prior models based on learned measurements and often face challenges in generalisation beyond the learned dataset. This work expands on the idea of using an interactive model-based generative technique for accurately estimating the human pose from uncalibrated unconstrained monocular TV sports footage. A method of keyframe propagation is introduced to obtain reliable tracking from limited operator input by introducing the concepts of keyframe propagation and optimal keyframe selection assistance for the operator. Experimental results show that the approach produces results competitive with those produced with twice the number of manually annotated keyframes, halving the amount of interaction required.","PeriodicalId":401915,"journal":{"name":"Proceedings of the 11th European Conference on Visual Media Production","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th European Conference on Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668904.2668938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper considers the problem of estimating human pose in challenging monocular sports videos, where manual intervention is often required in order to obtain useful results. Fully automatic approaches focus on developing inference algorithms and probabilistic prior models based on learned measurements and often face challenges in generalisation beyond the learned dataset. This work expands on the idea of using an interactive model-based generative technique for accurately estimating the human pose from uncalibrated unconstrained monocular TV sports footage. A method of keyframe propagation is introduced to obtain reliable tracking from limited operator input by introducing the concepts of keyframe propagation and optimal keyframe selection assistance for the operator. Experimental results show that the approach produces results competitive with those produced with twice the number of manually annotated keyframes, halving the amount of interaction required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非顺序关键帧传播的运动员姿态估计
本文考虑了具有挑战性的单目运动视频中人体姿态的估计问题,其中通常需要人工干预才能获得有用的结果。全自动方法侧重于开发基于学习测量的推理算法和概率先验模型,并且经常面临超越学习数据集的泛化挑战。这项工作扩展了使用基于交互式模型的生成技术的想法,用于从未校准的无约束单目电视体育镜头中准确估计人体姿势。通过引入关键帧传播和最优关键帧选择辅助的概念,提出了一种关键帧传播方法,在有限的算子输入条件下获得可靠的跟踪。实验结果表明,该方法产生的结果与手动注释关键帧数量的两倍产生的结果具有竞争力,所需交互量减半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing large scale CUDA applications using input data specific optimizations Bullet time using multi-viewpoint robotic camera system Saliency-based parameter tuning for tone mapping Advanced video debanding Multi-clip video editing from a single viewpoint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1