Short-term Tie-line Power Prediction Based on CNN-LSTM

He Huang, Yaming Lv
{"title":"Short-term Tie-line Power Prediction Based on CNN-LSTM","authors":"He Huang, Yaming Lv","doi":"10.1109/ei250167.2020.9346998","DOIUrl":null,"url":null,"abstract":"Wind power output has randomness and volatility, which is easy to cause frequency and tie-line power fluctuation of interconnected power grid, and even lead to tie-line out of limit, affecting grid assessment. For this reason, this paper proposes a short-term tie-line power prediction method based on CNN-LSTM, which inputs historical tie-line power into a convolutional neural network (CNN),extracts the data features, generates the feature map, and inputs them into the long-short term memory network (LSTM) for tie-line power prediction. The proposed method is applied to predict tie-line power of a certain regional power grid. The results indicate that the prediction result of the method presented is close to the real power data and has higher prediction accuracy than the traditional prediction method.","PeriodicalId":339798,"journal":{"name":"2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ei250167.2020.9346998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wind power output has randomness and volatility, which is easy to cause frequency and tie-line power fluctuation of interconnected power grid, and even lead to tie-line out of limit, affecting grid assessment. For this reason, this paper proposes a short-term tie-line power prediction method based on CNN-LSTM, which inputs historical tie-line power into a convolutional neural network (CNN),extracts the data features, generates the feature map, and inputs them into the long-short term memory network (LSTM) for tie-line power prediction. The proposed method is applied to predict tie-line power of a certain regional power grid. The results indicate that the prediction result of the method presented is close to the real power data and has higher prediction accuracy than the traditional prediction method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN-LSTM的短期联络线功率预测
风电输出具有随机性和波动性,容易造成互联电网频率和联络线功率波动,甚至导致联络线超限,影响电网评估。为此,本文提出了一种基于CNN-LSTM的短期联络线功率预测方法,该方法将历史联络线功率输入到卷积神经网络(CNN)中,提取数据特征,生成特征映射,输入到长短期记忆网络(LSTM)中进行联络线功率预测。将该方法应用于某区域电网的配线功率预测。结果表明,该方法的预测结果接近实际功率数据,比传统预测方法具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Operating Voltage Characteristics of UHV Transformer Medium-Voltage Side Reactive Power Compensation Capacity Limitation Service for Multi-Energy Virtual Power Plants Based on Multi-Parametric Programming A Double-ended Contactless Current Traveling Waves Scheme for Fault Location in Overhead Transmission Lines Characteristics of Lightning Faults of 220 kV and Above Overhead Transmission Lines in Zhejiang Province in last 15 Years Multinodal Forecasting of Industrial Power Load Using Participation Factor and Ensemble Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1