Fashion Attributes-to-Image Synthesis Using Attention-Based Generative Adversarial Network

Hanbit Lee, Sang-goo Lee
{"title":"Fashion Attributes-to-Image Synthesis Using Attention-Based Generative Adversarial Network","authors":"Hanbit Lee, Sang-goo Lee","doi":"10.1109/WACV.2019.00055","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method to generate fashion product images those are consistent with a given set of fashion attributes. Since distinct fashion attributes are related to different local sub-regions of a product image, we propose to use generative adversarial network with attentional discriminator. The attribute-attended loss signal from discriminator leads generator to generate more consistent images with given attributes. In addition, we present a generator based on Product-of-Gaussian to encode the composition of fashion attributes in effective way. To verify the proposed model whether it generates consistent image, an oracle attribute classifier is trained and judge the consistency of given attributes and the generated images. Our model significantly outperforms the baseline model in terms of correctness measured by the pre-trained oracle classifier. We show not only qualitative performance but also synthesized images with various combinations of attributes, so we can compare them with baseline model.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a method to generate fashion product images those are consistent with a given set of fashion attributes. Since distinct fashion attributes are related to different local sub-regions of a product image, we propose to use generative adversarial network with attentional discriminator. The attribute-attended loss signal from discriminator leads generator to generate more consistent images with given attributes. In addition, we present a generator based on Product-of-Gaussian to encode the composition of fashion attributes in effective way. To verify the proposed model whether it generates consistent image, an oracle attribute classifier is trained and judge the consistency of given attributes and the generated images. Our model significantly outperforms the baseline model in terms of correctness measured by the pre-trained oracle classifier. We show not only qualitative performance but also synthesized images with various combinations of attributes, so we can compare them with baseline model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力生成对抗网络的时尚属性-图像合成
在本文中,我们提出了一种方法来生成与给定的时尚属性集一致的时尚产品图像。由于不同的时尚属性与产品图像的不同局部子区域相关,我们建议使用带有注意鉴别器的生成对抗网络。来自鉴别器的属性伴随的丢失信号引导生成器生成与给定属性更一致的图像。此外,我们还提出了一种基于高斯乘积的生成器,以有效地对时尚属性的组合进行编码。为了验证所提出的模型是否生成一致的图像,训练oracle属性分类器并判断给定属性与生成图像的一致性。我们的模型在通过预训练的oracle分类器测量的正确性方面明显优于基线模型。我们不仅展示了定性性能,还展示了具有各种属性组合的合成图像,以便与基线模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1