A. Akamo, R. Ugbaja, O. Ademuyiwa, D. I. Akinloye, O. T. Somade, D. Ojo, O. A. Talabi, E. Balogun
{"title":"GENDER-RELATED ALTERATIONS IN FREE FATTY ACIDS AND OXIDATIVE STRESS IN HYPERTENSION CO-MORBIDLY OCCURRING WITH TYPE 2 DIABETES MELLITUS","authors":"A. Akamo, R. Ugbaja, O. Ademuyiwa, D. I. Akinloye, O. T. Somade, D. Ojo, O. A. Talabi, E. Balogun","doi":"10.51406/jnset.v16i2.1885","DOIUrl":null,"url":null,"abstract":"Increase in plasma free fatty acids (FFAs) concentrations may cause cellular damage via the induction of oxidative stress. The aim of this present study was to investigate FFAs and oxidative stress in hypertension co-morbidly occurring with Type 2 Diabetes Mellitus (T2DM). Age and sex matched control subjects (n=150) and patients (n=470) [hypertensive nondiabetics (HND, n=179), normotensive diabetics (ND, n=132), hypertensive diabetics (HD, n=159)] presenting at the Medical Out-Patient Clinic of the State Hospital, Abeokuta, Nigeria were recruited. Fasting plasma glucose, creatinine, urea, FFAs, thiobarbituric acid reactive substances (TBARS) were determined spectrophotometrically. The presence of either or both diseases resulted in significant increase (p<0.05) in the plasma FFAs and oxidative stress marker-TBARS in different compartments (plasma, erythrocytes andlipoproteins) for both male and female patients when compared with their control counterparts. The increase in FFAs was more marked in comorbidity female when compared with other female patients. There was significant (p<0.05) difference in gender FFAs concentrations. In both controls and patients, FFAs in plasma are significantly (p<0.05) higher in male when compared with their female counterparts. This research revealed biochemical variations in hypertension co-morbidly occurring with T2DMcharacterised by gender-related elevation in FFAs and enhanced oxidative stress. Plasma FFAs might be a good biomarker predicting the occurrence and development of hypertension and/or T2DM. \n ","PeriodicalId":389500,"journal":{"name":"Journal of Natural Sciences Engineering and Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51406/jnset.v16i2.1885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Increase in plasma free fatty acids (FFAs) concentrations may cause cellular damage via the induction of oxidative stress. The aim of this present study was to investigate FFAs and oxidative stress in hypertension co-morbidly occurring with Type 2 Diabetes Mellitus (T2DM). Age and sex matched control subjects (n=150) and patients (n=470) [hypertensive nondiabetics (HND, n=179), normotensive diabetics (ND, n=132), hypertensive diabetics (HD, n=159)] presenting at the Medical Out-Patient Clinic of the State Hospital, Abeokuta, Nigeria were recruited. Fasting plasma glucose, creatinine, urea, FFAs, thiobarbituric acid reactive substances (TBARS) were determined spectrophotometrically. The presence of either or both diseases resulted in significant increase (p<0.05) in the plasma FFAs and oxidative stress marker-TBARS in different compartments (plasma, erythrocytes andlipoproteins) for both male and female patients when compared with their control counterparts. The increase in FFAs was more marked in comorbidity female when compared with other female patients. There was significant (p<0.05) difference in gender FFAs concentrations. In both controls and patients, FFAs in plasma are significantly (p<0.05) higher in male when compared with their female counterparts. This research revealed biochemical variations in hypertension co-morbidly occurring with T2DMcharacterised by gender-related elevation in FFAs and enhanced oxidative stress. Plasma FFAs might be a good biomarker predicting the occurrence and development of hypertension and/or T2DM.