{"title":"GENOMEVIEWER: An Interactive Genomic Somatic Mutation Visualizer.","authors":"Beatriz S. Kanzki, A. April","doi":"10.1145/3079452.3079477","DOIUrl":null,"url":null,"abstract":"New Generation Sequencing (NGS) technologies offer new insights to researchers in the field of oncogenomics. These technologies provide valuable genetic information by rapidly detecting and identifying expected mutations to improve clinical treatments. To be used effectively, this large amount of data has to be processed, explored and interpreted carefully and quickly. Meanwhile, cancer research continues to publish new theories and findings based on large-scale collaborative projects that provide publicly available genomic and clinical cancer data. However, researchers have a hard time using the data to its full potential although it's readily available. Between the growing output size and complexity of NGS technologies, and the growing number of publicly available heterogeneous databases, processing and exploring this data can become a challenge for the average researcher. This paper presents GenomeViewer's functionalities, which specializes in visualization of somatic mutations in cancer genomics. This easy to use software will enable cancer researchers to seamlessly compare their data against publicly available resources. GenomeViewer uses \"Big Data\" technologies such as Spark and Parquet, and is based on the UC Berkeley's Analysis Data Model (ADAM) genomic format for cloud scale computing. Our hope is that GenomeViewer will become the preferred tool for viewing somatic mutations for researchers in cancer genomics.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New Generation Sequencing (NGS) technologies offer new insights to researchers in the field of oncogenomics. These technologies provide valuable genetic information by rapidly detecting and identifying expected mutations to improve clinical treatments. To be used effectively, this large amount of data has to be processed, explored and interpreted carefully and quickly. Meanwhile, cancer research continues to publish new theories and findings based on large-scale collaborative projects that provide publicly available genomic and clinical cancer data. However, researchers have a hard time using the data to its full potential although it's readily available. Between the growing output size and complexity of NGS technologies, and the growing number of publicly available heterogeneous databases, processing and exploring this data can become a challenge for the average researcher. This paper presents GenomeViewer's functionalities, which specializes in visualization of somatic mutations in cancer genomics. This easy to use software will enable cancer researchers to seamlessly compare their data against publicly available resources. GenomeViewer uses "Big Data" technologies such as Spark and Parquet, and is based on the UC Berkeley's Analysis Data Model (ADAM) genomic format for cloud scale computing. Our hope is that GenomeViewer will become the preferred tool for viewing somatic mutations for researchers in cancer genomics.