Ensemble classification of cyber space users tendency in blog writing using random forest

N. Samsudin, A. Mustapha, M. Wahab
{"title":"Ensemble classification of cyber space users tendency in blog writing using random forest","authors":"N. Samsudin, A. Mustapha, M. Wahab","doi":"10.1109/INNOVATIONS.2016.7880046","DOIUrl":null,"url":null,"abstract":"As blogs widely spread, the need to extract information is necessary in order to deal with different issues such as social, political, criminal and others. This research takes off from Gharehchopogh et al. [2], [3] who used the C4.5 and K-Nearest Neighbor (K-NN) algorithms to classify bloggers whether they are professional or otherwise from the Kohkilooyeh and Boyer Ahmad province in Iran. As a comparative measure, this paper proposed the Random Forest algorithm to perform the blog classification using the same dataset. The results showed that ensemble classification via Random Forest algorithm is able to produce higher precision of 88% as compared to 82% by the C4.5 algorithm and 84% by K-NN in the previous research.","PeriodicalId":412653,"journal":{"name":"2016 12th International Conference on Innovations in Information Technology (IIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2016.7880046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As blogs widely spread, the need to extract information is necessary in order to deal with different issues such as social, political, criminal and others. This research takes off from Gharehchopogh et al. [2], [3] who used the C4.5 and K-Nearest Neighbor (K-NN) algorithms to classify bloggers whether they are professional or otherwise from the Kohkilooyeh and Boyer Ahmad province in Iran. As a comparative measure, this paper proposed the Random Forest algorithm to perform the blog classification using the same dataset. The results showed that ensemble classification via Random Forest algorithm is able to produce higher precision of 88% as compared to 82% by the C4.5 algorithm and 84% by K-NN in the previous research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林的网络空间用户博客写作倾向集成分类
随着博客的广泛传播,为了处理不同的问题,如社会、政治、犯罪等,需要提取信息是必要的。这项研究源于Gharehchopogh等人[2],[3],他们使用C4.5和k -最近邻(K-NN)算法对博客作者进行分类,无论他们是来自伊朗Kohkilooyeh和Boyer Ahmad省的专业人士还是其他专业人士。作为比较措施,本文提出了随机森林算法,使用相同的数据集进行博客分类。结果表明,Random Forest算法的集成分类精度达到88%,而之前的研究中C4.5算法的准确率为82%,K-NN的准确率为84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Candidate document retrieval for Arabic-based text reuse detection on the web Two dimensional filters for improving the resolution of up-sampled video files Identifying roles of fishing ports using multi-source data aggregation Lightweight encryption algorithm in wireless body area network for e-health monitoring Review of personalized language learning systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1