Applying supervised learning techniques to Brazilian music genre classification

Júlia Luiza Conceição, Rosiane de Freitas, Bruno F. Gadelha, João Gustavo Kienen, Sérgio Anders, Brendo Cavalcante
{"title":"Applying supervised learning techniques to Brazilian music genre classification","authors":"Júlia Luiza Conceição, Rosiane de Freitas, Bruno F. Gadelha, João Gustavo Kienen, Sérgio Anders, Brendo Cavalcante","doi":"10.1109/CLEI52000.2020.00019","DOIUrl":null,"url":null,"abstract":"In this work, an initial study on the automatic recognition of the main Brazilian music genres is presented: Axé, Forró, MPB, Rock, Samba, and Sertanejo. Through the extraction of representative musical characteristics, automatic classification experiments were performed applying classical supervised learning algorithms and Weka ML tool. An analysis of the main available databases was also carried out: GTZAN, FMA, AudioSet, RWC, ISMIR, Magnatune, and LMD. There is a scarcity of cultural diversity on these bases, most of which concentrate globally more popular styles such as Pop and Rock, reinforcing the need to include more diverse and culturally identifiable genres, such as Brazilians. The preliminary results obtained demonstrate the adequacy of the recognition process of the main Brazilian musical genres.","PeriodicalId":413655,"journal":{"name":"2020 XLVI Latin American Computing Conference (CLEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XLVI Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI52000.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, an initial study on the automatic recognition of the main Brazilian music genres is presented: Axé, Forró, MPB, Rock, Samba, and Sertanejo. Through the extraction of representative musical characteristics, automatic classification experiments were performed applying classical supervised learning algorithms and Weka ML tool. An analysis of the main available databases was also carried out: GTZAN, FMA, AudioSet, RWC, ISMIR, Magnatune, and LMD. There is a scarcity of cultural diversity on these bases, most of which concentrate globally more popular styles such as Pop and Rock, reinforcing the need to include more diverse and culturally identifiable genres, such as Brazilians. The preliminary results obtained demonstrate the adequacy of the recognition process of the main Brazilian musical genres.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将监督学习技术应用于巴西音乐类型分类
在这项工作中,提出了对主要巴西音乐流派的自动识别的初步研究:ax, Forró, MPB, Rock, Samba和Sertanejo。通过对代表性音乐特征的提取,应用经典监督学习算法和Weka ML工具进行自动分类实验。对可用的主要数据库进行了分析:GTZAN、FMA、AudioSet、RWC、ISMIR、Magnatune和LMD。这些基地缺乏文化多样性,其中大多数集中在流行音乐和摇滚等全球流行风格上,这加强了包括更多样化和文化上可识别的流派的需求,比如巴西人。初步结果证明了巴西主要音乐类型识别过程的充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
System with Optical Mark Recognition Based on Artificial Vision for the Processing of Multiple Selection Tests in School Competitions Predictive data analysis techniques applied to dropping out of university studies Real-Time Violence Detection in Videos Using Dynamic Images SECO-AM: An Approach for Maintenance of IT Architecture in Software Ecosystems A Mobile Crowdsensing-Based Solution for Online Bus Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1