An Improved Faster-RCNN Algorithm for Object Detection in Remote Sensing Images

Rui Liu, Zhihua Yu, Daili Mo, Yunfei Cai
{"title":"An Improved Faster-RCNN Algorithm for Object Detection in Remote Sensing Images","authors":"Rui Liu, Zhihua Yu, Daili Mo, Yunfei Cai","doi":"10.23919/CCC50068.2020.9189024","DOIUrl":null,"url":null,"abstract":"Compared with conventional object detection, remote sensing images are taken from the air. The angle of view is not fixed and the object direction, scale which compared with conventional object detection algorithm are quite different. These factors lead to the object detection in remote sensing images difficult. To solve the above problems, this paper proposes an improved remote sensing object detection method based on Faster-RCNN algorithm. Using online difficult example mining technology, feature pyramid structure, Soft-NMS technology, and RoI-Align technology to enhance the capabilities of Faster-RCNN in small object detection task in remote sensing images. The algorithm in this paper was evaluated on the RSOD-Dataset, compared with the original Faster-RCNN algorithm, the proposed algorithm improves the detection accuracy and training convergence speed, which shows that these improvements are of great significance to the object detection algorithm of remote sensing images.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Compared with conventional object detection, remote sensing images are taken from the air. The angle of view is not fixed and the object direction, scale which compared with conventional object detection algorithm are quite different. These factors lead to the object detection in remote sensing images difficult. To solve the above problems, this paper proposes an improved remote sensing object detection method based on Faster-RCNN algorithm. Using online difficult example mining technology, feature pyramid structure, Soft-NMS technology, and RoI-Align technology to enhance the capabilities of Faster-RCNN in small object detection task in remote sensing images. The algorithm in this paper was evaluated on the RSOD-Dataset, compared with the original Faster-RCNN algorithm, the proposed algorithm improves the detection accuracy and training convergence speed, which shows that these improvements are of great significance to the object detection algorithm of remote sensing images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的快速rcnn遥感图像目标检测算法
与传统的目标检测相比,遥感图像是从空中获取的。该算法的视角不固定,物体的方向、尺度与传统的目标检测算法有很大的不同。这些因素导致了遥感图像中目标检测的困难。针对上述问题,本文提出了一种基于Faster-RCNN算法的改进遥感目标检测方法。利用在线难例挖掘技术、特征金字塔结构、Soft-NMS技术和RoI-Align技术,增强Faster-RCNN在遥感图像小目标检测任务中的能力。在RSOD-Dataset上对本文算法进行了评价,与原有Faster-RCNN算法相比,本文算法在检测精度和训练收敛速度上均有提高,可见这些改进对遥感图像目标检测算法具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1