Nanocomposite and Nanofluids: Towards a Sustainable Carbon Capture, Utilization, and Storage

R. Nguele, K. N. Nono, K. Sasaki
{"title":"Nanocomposite and Nanofluids: Towards a Sustainable Carbon Capture, Utilization, and Storage","authors":"R. Nguele, K. N. Nono, K. Sasaki","doi":"10.5772/INTECHOPEN.95838","DOIUrl":null,"url":null,"abstract":"Large volumes of unconventional fossil resource are untapped because of the capillary forces, which kept the oil stranded underground. Furthermore, with the increasing demand for sustainable energy and the rising attention geared towards environment protection, there is a vital need to develop materials that bridge the gap between the fossil and renewable resources effectively. An intensive attention has been given to nanomaterials, which from their native features could increase either the energy storage or improve the recovery of fossil energy. The present chapter, therefore, presents the recent advancements of nanotechnology towards the production of unconventional resources and renewable energy. The chapter focuses primarily on nanomaterials applications for both fossils and renewable energies. The chapter is not intended to be an exhaustive representation of nanomaterials, rather it aims at broadening the knowledge on functional nanomaterials for possible engineering applications.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microfluidics and Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.95838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large volumes of unconventional fossil resource are untapped because of the capillary forces, which kept the oil stranded underground. Furthermore, with the increasing demand for sustainable energy and the rising attention geared towards environment protection, there is a vital need to develop materials that bridge the gap between the fossil and renewable resources effectively. An intensive attention has been given to nanomaterials, which from their native features could increase either the energy storage or improve the recovery of fossil energy. The present chapter, therefore, presents the recent advancements of nanotechnology towards the production of unconventional resources and renewable energy. The chapter focuses primarily on nanomaterials applications for both fossils and renewable energies. The chapter is not intended to be an exhaustive representation of nanomaterials, rather it aims at broadening the knowledge on functional nanomaterials for possible engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米复合材料和纳米流体:迈向可持续碳捕获、利用和储存
由于毛细管力使石油滞留在地下,大量的非常规化石资源尚未开发。此外,随着对可持续能源需求的增加和对环境保护的日益重视,迫切需要开发能够有效地弥合矿物资源和可再生资源之间差距的材料。纳米材料由于其固有的特性可以增加能源的储存或提高化石能源的回收,受到了人们的广泛关注。因此,本章介绍了纳米技术在生产非常规资源和可再生能源方面的最新进展。本章主要关注纳米材料在化石和可再生能源中的应用。本章并不打算详尽地介绍纳米材料,而是旨在扩大功能纳米材料的知识,以用于可能的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Parameters on Increasing Efficiency of Microscale Heat Sinks and Application of Liquid Cooling in Real Life Introductory Chapter: An Overview of Advances in Microfluidics and Nanofluids Technologies Micromixers for Wastewater Treatment and Their Life Cycle Assessment (LCA) Micro Milling Process for the Rapid Prototyping of Microfluidic Devices Solar Thermal Conversion of Plasmonic Nanofluids: Fundamentals and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1