The memristive artificial neuron high level architecture for biologically inspired robotic systems

M. Talanov, Evgeniy Zykov, V. Erokhin, E. Magid, Salvatore Distefano
{"title":"The memristive artificial neuron high level architecture for biologically inspired robotic systems","authors":"M. Talanov, Evgeniy Zykov, V. Erokhin, E. Magid, Salvatore Distefano","doi":"10.1109/ICMSC.2017.7959470","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new hardware architecture for the implementation of an artificial neuron based on organic memristive elements and operational amplifiers. This architecture is proposed as a possible solution for the integration and deployment of the cluster based bio- realistic simulation of a mammalian brain into a robotic system. Originally, this simulation has been developed through a neuro-biologically inspired cognitive architecture (NeuCogAr) re-implementing basic emotional states or affects in a computational system. This way, the dopamine, serotonin and noradrenaline pathways developed in NeuCogAr are synthesized through hardware memristors suitable for the implementation of basic emotional states or affects on a biologically inspired robotic system.","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we propose a new hardware architecture for the implementation of an artificial neuron based on organic memristive elements and operational amplifiers. This architecture is proposed as a possible solution for the integration and deployment of the cluster based bio- realistic simulation of a mammalian brain into a robotic system. Originally, this simulation has been developed through a neuro-biologically inspired cognitive architecture (NeuCogAr) re-implementing basic emotional states or affects in a computational system. This way, the dopamine, serotonin and noradrenaline pathways developed in NeuCogAr are synthesized through hardware memristors suitable for the implementation of basic emotional states or affects on a biologically inspired robotic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿生机器人系统的忆阻人工神经元高级架构
本文提出了一种基于有机忆阻元件和运算放大器的人工神经元硬件结构。该体系结构是将基于集群的哺乳动物大脑生物逼真模拟集成和部署到机器人系统中的一种可能的解决方案。最初,这种模拟是通过神经生物学启发的认知架构(NeuCogAr)在计算系统中重新实现基本的情绪状态或影响而开发的。通过这种方式,在NeuCogAr中产生的多巴胺、血清素和去甲肾上腺素通路通过硬件忆阻器合成,适用于在生物启发的机器人系统中执行基本情绪状态或影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of normal and abnormal ECG signals based on their PQRST intervals Accurate model reduction of large scale systems using adaptive multi-objective particle swarm optimization algorithm Chattering-free sliding mode control for strict-feedback nonlinear systems using back-stepping technique Microwave CVD deposition and properties of nano / microcrystalline diamond multilayer coatings on tungsten carbide cutting tools A comparative study of two methods for forward kinematics and Jacobian matrix determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1