Using Universal Composition to Design and Analyze Secure Complex Hardware Systems

R. Canetti, Marten van Dijk, Hoda Maleki, U. Rührmair, P. Schaumont
{"title":"Using Universal Composition to Design and Analyze Secure Complex Hardware Systems","authors":"R. Canetti, Marten van Dijk, Hoda Maleki, U. Rührmair, P. Schaumont","doi":"10.23919/DATE48585.2020.9116295","DOIUrl":null,"url":null,"abstract":"Modern hardware typically is characterized by a multitude of interacting physical components and software mechanisms. To address this complexity, security analysis should be modular: We would like to formulate and prove security properties of individual components, and then deduce the security of the overall design (encompassing hardware and software) from the security of the components. While this seems like an elusive goal, we argue that this is essentially the only feasible way to provide rigorous security analysis of modern hardware.This paper investigates the possibility of using the Universally Composable (UC) security framework towards this aim. The UC framework has been devised and successfully used in the theoretical cryptography community to study and formally prove security of arbitrarily interleaving cryptographic protocols. In particular, a sophisticated analytical toolbox has been developed using this framework. We provide an introduction to this frame-work, and investigate, via a number of examples, ways by which this framework can be used to facilitate a novel type of modular security analysis. This analysis applies to combined hardware and software systems, and investigates their security against attacks that combine both physical and digital steps.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern hardware typically is characterized by a multitude of interacting physical components and software mechanisms. To address this complexity, security analysis should be modular: We would like to formulate and prove security properties of individual components, and then deduce the security of the overall design (encompassing hardware and software) from the security of the components. While this seems like an elusive goal, we argue that this is essentially the only feasible way to provide rigorous security analysis of modern hardware.This paper investigates the possibility of using the Universally Composable (UC) security framework towards this aim. The UC framework has been devised and successfully used in the theoretical cryptography community to study and formally prove security of arbitrarily interleaving cryptographic protocols. In particular, a sophisticated analytical toolbox has been developed using this framework. We provide an introduction to this frame-work, and investigate, via a number of examples, ways by which this framework can be used to facilitate a novel type of modular security analysis. This analysis applies to combined hardware and software systems, and investigates their security against attacks that combine both physical and digital steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用通用组合设计和分析安全的复杂硬件系统
现代硬件通常以大量相互作用的物理组件和软件机制为特征。为了解决这种复杂性,安全性分析应该是模块化的:我们希望制定和证明单个组件的安全性属性,然后从组件的安全性推断出整体设计(包括硬件和软件)的安全性。虽然这似乎是一个难以实现的目标,但我们认为这实际上是为现代硬件提供严格的安全性分析的唯一可行方法。本文探讨了采用通用可组合(UC)安全框架实现这一目标的可能性。UC框架已被设计并成功应用于理论密码学界,用于研究和形式化证明任意交错密码协议的安全性。特别是,使用这个框架开发了一个复杂的分析工具箱。我们对该框架进行了介绍,并通过一些示例研究了使用该框架促进新型模块化安全分析的方法。这种分析适用于结合了硬件和软件的系统,并研究了它们对结合了物理和数字步骤的攻击的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1