Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models

Somayeh Ghanbarzadeh, Yan Huang, H. Palangi, R. C. Moreno, Hamed Khanpour
{"title":"Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models","authors":"Somayeh Ghanbarzadeh, Yan Huang, H. Palangi, R. C. Moreno, Hamed Khanpour","doi":"10.48550/arXiv.2307.10522","DOIUrl":null,"url":null,"abstract":"Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.10522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性别调整:增强微调去偏见预训练语言模型
最近的研究表明,广泛使用的预训练语言模型(PLMs)从大量未经调节的预训练语料库中传播社会偏见。现有的解决方案需要除偏训练过程和除偏数据集,这是资源密集型和昂贵的。此外,这些方法损害了plm在下游任务上的性能。在本研究中,我们提出性别调整,通过对下游任务数据集的微调来消除plm的偏差。为此,性别调优将掩码语言建模(MLM)的训练目标集成到调优的训练过程中。综合实验表明,性别调整在plm的平均性别偏见得分方面优于最先进的基线,同时仅使用下游任务的数据集提高了plm在下游任务上的表现。此外,性别调优对于任何使用原始微调的PLM来说都是一个可部署的消除偏见的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance How-to Guides for Specific Audiences: A Corpus and Initial Findings Substitution-based Semantic Change Detection using Contextual Embeddings MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1