Off-line Farsi / arabic handwritten word recognition using vector quantization and hidden Markov model

B. Vaseghi, S. Alirezaee, M. Ahmadi, R. Amirfattahi
{"title":"Off-line Farsi / arabic handwritten word recognition using vector quantization and hidden Markov model","authors":"B. Vaseghi, S. Alirezaee, M. Ahmadi, R. Amirfattahi","doi":"10.1109/INMIC.2008.4777804","DOIUrl":null,"url":null,"abstract":"In this paper a Farsi handwritten word recognition system for reading city names in postal addresses is presented. The method is based on vector quantization (VQ) and hidden Markov model (HMM). The sliding right to left window is used to extract the proper features(we have proposed four features). After feature extraction, K-means clustering is used for generation a codebook and VQ generates a codeword for each word image. In the next stage, HMM is trained by Baum Welch algorithm for each city name. A test image is recognized by finding the best match (likelihood) between the image and all of the HMM words models using forward algorithm. Experimental results show the advantages of using VQ/HMM recognizer engine instead of conventional discrete HMM.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper a Farsi handwritten word recognition system for reading city names in postal addresses is presented. The method is based on vector quantization (VQ) and hidden Markov model (HMM). The sliding right to left window is used to extract the proper features(we have proposed four features). After feature extraction, K-means clustering is used for generation a codebook and VQ generates a codeword for each word image. In the next stage, HMM is trained by Baum Welch algorithm for each city name. A test image is recognized by finding the best match (likelihood) between the image and all of the HMM words models using forward algorithm. Experimental results show the advantages of using VQ/HMM recognizer engine instead of conventional discrete HMM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离线波斯语/阿拉伯语手写单词识别使用矢量量化和隐马尔可夫模型
本文介绍了一种波斯语手写城市名称识别系统。该方法基于矢量量化(VQ)和隐马尔可夫模型(HMM)。从右到左的滑动窗口用于提取适当的特征(我们提出了四个特征)。特征提取后,使用K-means聚类生成码本,VQ为每个字图像生成一个码字。在下一阶段,使用Baum Welch算法对每个城市名称进行HMM训练。使用前向算法找到图像与所有HMM词模型之间的最佳匹配(似然)来识别测试图像。实验结果表明,使用VQ/HMM识别引擎代替传统的离散HMM识别具有一定的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1