Theoretical Categorization of Query Performance Predictors

Victor Makarenkov, Bracha Shapira, L. Rokach
{"title":"Theoretical Categorization of Query Performance Predictors","authors":"Victor Makarenkov, Bracha Shapira, L. Rokach","doi":"10.1145/2808194.2809475","DOIUrl":null,"url":null,"abstract":"The query-performance prediction task aims at estimating the retrieval effectiveness of queries without obtaining relevance feedback from users. Most of the recently proposed predictors were empirically evaluated with various datasets to demonstrate their merits. We propose a framework for theoretical categorization and estimation of the value of query performance predictors (QPP) without empirical evaluation. We demonstrate the application of the proposed framework on four representative selected predictors and show how it emphasizes their strengths and weaknesses. The main contribution of this work is the theoretical grounded categorization of representative QPP.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The query-performance prediction task aims at estimating the retrieval effectiveness of queries without obtaining relevance feedback from users. Most of the recently proposed predictors were empirically evaluated with various datasets to demonstrate their merits. We propose a framework for theoretical categorization and estimation of the value of query performance predictors (QPP) without empirical evaluation. We demonstrate the application of the proposed framework on four representative selected predictors and show how it emphasizes their strengths and weaknesses. The main contribution of this work is the theoretical grounded categorization of representative QPP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
查询性能预测器的理论分类
查询性能预测任务的目的是在不获得用户相关性反馈的情况下估计查询的检索效率。最近提出的大多数预测因子都是用各种数据集进行经验评估的,以证明它们的优点。我们提出了一个框架,在没有经验评估的情况下对查询性能预测器(QPP)的价值进行理论分类和估计。我们展示了所提出的框架在四个代表性选择预测器上的应用,并展示了它如何强调它们的优势和劣势。本工作的主要贡献是基于理论的代表性QPP分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entity Linking in Queries: Tasks and Evaluation Using Part-of-Speech N-grams for Sensitive-Text Classification Query Expansion with Freebase Partially Labeled Supervised Topic Models for RetrievingSimilar Questions in CQA Forums Two Operators to Define and Manipulate Themes of a Document Collection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1