Accelerating Cache Coherence in Manycore Processor through Silicon Photonic Chiplet

Chengeng Li, Fan Jiang, Shixi Chen, Jiaxu Zhang, Yinyi Liu, Yuxiang Fu, Jiang Xu
{"title":"Accelerating Cache Coherence in Manycore Processor through Silicon Photonic Chiplet","authors":"Chengeng Li, Fan Jiang, Shixi Chen, Jiaxu Zhang, Yinyi Liu, Yuxiang Fu, Jiang Xu","doi":"10.1145/3508352.3549338","DOIUrl":null,"url":null,"abstract":"Cache coherence overhead in manycore systems is becoming prominent with the increase of system scale. However, traditional electrical networks restrict the efficiency of cache coherence transactions in the system due to the limited bandwidth and long latency. Optical network promises high bandwidth and low latency, and supports both efficient unicast and multicast transmission, which can potentially accelerate cache coherence in manycore systems. This work proposes a novel photonic cache coherence network with a physically centralized logically distributed directory called PCCN for chiplet-based manycore systems. PCCN adopts a channel sharing method with a contention solving mechanism for efficient long-distance coherence-related packet transmission. Experiment results show that compared to state-of-the-art proposals, PCCN can speed up application execution time by 1.32x, reduce memory access latency by 26%, and improve energy efficiency by 1.26x, on average, in a 128-core system.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cache coherence overhead in manycore systems is becoming prominent with the increase of system scale. However, traditional electrical networks restrict the efficiency of cache coherence transactions in the system due to the limited bandwidth and long latency. Optical network promises high bandwidth and low latency, and supports both efficient unicast and multicast transmission, which can potentially accelerate cache coherence in manycore systems. This work proposes a novel photonic cache coherence network with a physically centralized logically distributed directory called PCCN for chiplet-based manycore systems. PCCN adopts a channel sharing method with a contention solving mechanism for efficient long-distance coherence-related packet transmission. Experiment results show that compared to state-of-the-art proposals, PCCN can speed up application execution time by 1.32x, reduce memory access latency by 26%, and improve energy efficiency by 1.26x, on average, in a 128-core system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用硅光子芯片加速多核处理器高速缓存相干性
随着系统规模的扩大,多核系统的缓存一致性开销日益突出。然而,传统的电力网络由于带宽有限和延迟长,限制了系统中缓存一致性事务的效率。光网络保证了高带宽和低延迟,并且支持高效的单播和多播传输,可以潜在地提高多核系统中的缓存一致性。这项工作提出了一种新的光子缓存相干网络,具有物理集中的逻辑分布式目录,称为PCCN,用于基于芯片的多核系统。PCCN采用信道共享方式和争用解决机制,实现高效的远程相干包传输。实验结果表明,在128核系统中,与最先进的方案相比,PCCN平均可将应用程序执行时间提高1.32倍,将内存访问延迟降低26%,并将能源效率提高1.26倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1