Adaptive User Engagement Evaluation via Multi-task Learning

Hamed Zamani, Pooya Moradi, A. Shakery
{"title":"Adaptive User Engagement Evaluation via Multi-task Learning","authors":"Hamed Zamani, Pooya Moradi, A. Shakery","doi":"10.1145/2766462.2767785","DOIUrl":null,"url":null,"abstract":"User engagement evaluation task in social networks has recently attracted considerable attention due to its applications in recommender systems. In this task, the posts containing users' opinions about items, e.g., the tweets containing the users' ratings about movies in the IMDb website, are studied. In this paper, we try to make use of tweets from different web applications to improve the user engagement evaluation performance. To this aim, we propose an adaptive method based on multi-task learning. Since in this paper we study the problem of detecting tweets with positive engagement which is a highly imbalanced classification problem, we modify the loss function of multi-task learning algorithms to cope with the imbalanced data. Our evaluations over a dataset including the tweets of four diverse and popular data sources, i.e., IMDb, YouTube, Goodreads, and Pandora, demonstrate the effectiveness of the proposed method. Our findings suggest that transferring knowledge between data sources can improve the user engagement evaluation performance.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"2528 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

User engagement evaluation task in social networks has recently attracted considerable attention due to its applications in recommender systems. In this task, the posts containing users' opinions about items, e.g., the tweets containing the users' ratings about movies in the IMDb website, are studied. In this paper, we try to make use of tweets from different web applications to improve the user engagement evaluation performance. To this aim, we propose an adaptive method based on multi-task learning. Since in this paper we study the problem of detecting tweets with positive engagement which is a highly imbalanced classification problem, we modify the loss function of multi-task learning algorithms to cope with the imbalanced data. Our evaluations over a dataset including the tweets of four diverse and popular data sources, i.e., IMDb, YouTube, Goodreads, and Pandora, demonstrate the effectiveness of the proposed method. Our findings suggest that transferring knowledge between data sources can improve the user engagement evaluation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多任务学习的自适应用户粘性评估
社交网络中的用户参与评价任务由于在推荐系统中的应用,近年来引起了人们的广泛关注。在这个任务中,我们研究了包含用户对项目的意见的帖子,例如,在IMDb网站上包含用户对电影评分的tweets。在本文中,我们尝试利用来自不同web应用程序的tweet来提高用户参与度评估性能。为此,我们提出了一种基于多任务学习的自适应方法。由于本文研究的是一个高度不平衡的分类问题——积极参与推文检测问题,因此我们修改了多任务学习算法的损失函数来处理不平衡数据。我们对一个数据集进行了评估,其中包括四个不同的流行数据源的推文,即IMDb, YouTube, Goodreads和Pandora,证明了所提出方法的有效性。我们的研究结果表明,在数据源之间转移知识可以提高用户参与评估的绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1