A Study on Productivity Improvement for the SKD11 Steel Grinding by Using CBN Grinding Wheel - A New Approach

N. H. Son, D. Trung, N. Nguyen
{"title":"A Study on Productivity Improvement for the SKD11 Steel Grinding by Using CBN Grinding Wheel - A New Approach","authors":"N. H. Son, D. Trung, N. Nguyen","doi":"10.13189/ujme.2020.080104","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to improve the machining productivity when grinding the SKD11 steel by using CBN grinding wheel. This approach based on the satisfaction of the surface roughness requirement. The grinding experiments were carried out according to Box-Behnken plan by using the CBN grinding wheel, HY-180x13x31.75-100#. The experimental data was used to build a regression function of the surface roughness depending of the cutting parameters in grinding process including the workpiece velocity, radial feed rate, and depth of cut. The effect degree of each cutting parameter on the surface roughness was also determined. And then, a new solution was proposed to improve the grinding productivity by increasing the workpiece velocity with the satisfaction of the surface roughness requirement. The proposed solution was verified by experimental research. The analyzed results showed that the workpiece velocity can be increased about 1.7 times to increase the machining productivity while the surface roughness only changed about 0.14μm.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2020.080104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new approach to improve the machining productivity when grinding the SKD11 steel by using CBN grinding wheel. This approach based on the satisfaction of the surface roughness requirement. The grinding experiments were carried out according to Box-Behnken plan by using the CBN grinding wheel, HY-180x13x31.75-100#. The experimental data was used to build a regression function of the surface roughness depending of the cutting parameters in grinding process including the workpiece velocity, radial feed rate, and depth of cut. The effect degree of each cutting parameter on the surface roughness was also determined. And then, a new solution was proposed to improve the grinding productivity by increasing the workpiece velocity with the satisfaction of the surface roughness requirement. The proposed solution was verified by experimental research. The analyzed results showed that the workpiece velocity can be increased about 1.7 times to increase the machining productivity while the surface roughness only changed about 0.14μm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBN砂轮提高SKD11钢磨削生产率的新途径
提出了一种利用CBN砂轮磨削SKD11钢提高加工生产率的新方法。该方法以满足表面粗糙度要求为基础。采用HY-180x13x31.75-100# CBN砂轮,按照Box-Behnken方案进行磨削试验。利用实验数据建立了磨削过程中工件速度、径向进给速度和切削深度等切削参数对表面粗糙度的回归函数。确定了各切削参数对表面粗糙度的影响程度。在满足表面粗糙度要求的前提下,通过提高工件速度来提高磨削生产率。通过实验研究验证了该方案的有效性。分析结果表明,工件速度可提高约1.7倍,而表面粗糙度仅改变约0.14μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer in a HfB2 Microchannel Heat Sink: A Numerical Approach Design and Implementation of Highly Robust Gantry-Type and Low-Cost 3D Concrete Printer for Construction Estimating Tire Forces Using MLP Neural Network and LM Algorithm: A Comparative Study Optimization of Quarter Car Suspension Dynamics Using Power Spectral Density of Irregular Road Profile CAD Modelling and Fatigue Analysis of a Wheel Rim Incorporating Finite Element Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1